Linear Algebra and the C Language/a044
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as: c00c.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C5
/* ------------------------------------ */
#define FACTOR_E +1.E-0
/* ------------------------------------ */
int main(void)
{
double txy[8] ={
1, 4,
2, 5,
3, -7,
4, 5 };
double tA[RA*CA]={
/* x**2 y**2 x y e */
+1, +0, +0, +0, +0,
+1, +16, +1, +4, +1,
+4, +25, +2, +5, +1,
+9, +49, +3, -7, +1,
+16, +25, +4, +5, +1,
};
double tb[RA*C1]={
/* = 0 */
+1,
+0,
+0,
+0,
+0
};
double **xy = ca_A_mR(txy, i_mR(R4,C2));
double **A = ca_A_mR(tA, i_mR(RA,CA));
double **b = ca_A_mR(tb, i_mR(RA,C1));
double **Pinv = Pinv_Rn_mR(A, i_mR(CA,RA),FACTOR_E);
double **Pinvb = mul_mR(Pinv,b, i_mR(CA,C1));
clrscrn();
printf("\n");
printf(" Find the coefficients a, b, c, d, e, of the curve \n\n");
printf(" ax**2 + by**2 + cx + dy + e = 0 \n\n");
printf(" that passes through these four points.\n\n");
printf(" x y");
p_mR(xy, S10,P0,C6);
stop();
clrscrn();
printf(" Using the given points, we obtain this matrix.\n");
printf(" (a = 1. This is my choice)\n\n");
printf(" A:");
p_mR(A, S10,P2,C7);
printf(" b:");
p_mR(b, S10,P2,C7);
printf(" Pinv = V invS_T U_T ");
pE_mR(Pinv, S12,P4,C10);
stop();
clrscrn();
printf(" Solving this system yields a unique\n"
" least squares solution, namely \n\n");
printf(" Pinv b ");
p_mR(Pinvb, S10,P4,C10);
printf(" The coefficients a, b, c, d, e, of the curve are: \n\n"
" %+.9f*x^2 %+.9f*y^2 %+.9f*x %+.9f*y %+.9f = 0\n\n"
,Pinvb[R1][C1],Pinvb[R2][C1],Pinvb[R3][C1],
Pinvb[R4][C1],Pinvb[R5][C1]);
stop();
f_mR(xy);
f_mR(b);
f_mR(A);
f_mR(Pinv);
f_mR(Pinvb);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Screen output example:
Find the coefficients a, b, c, d, e, of the curve
ax**2 + by**2 + cx + dy + e = 0
that passes through these four points.
x y
+1 +4
+2 +5
+3 -7
+4 +5
Press return to continue.
Using the given points, we obtain this matrix.
(a = 1. This is my choice)
A :
+1.00 +0.00 +0.00 +0.00 +0.00
+1.00 +16.00 +1.00 +4.00 +1.00
+4.00 +25.00 +2.00 +5.00 +1.00
+9.00 +49.00 +3.00 -7.00 +1.00
+16.00 +25.00 +4.00 +5.00 +1.00
b :
+1.00
+0.00
+0.00
+0.00
+0.00
Pinv = V * invS_T * U_T
+1.0000e+00 +9.8734e-11 -8.1187e-11 +4.7280e-12 +8.7404e-12
+2.8030e-01 -9.0909e-02 +1.3258e-01 +7.5758e-03 -4.9242e-02
-6.0000e+00 -6.1187e-10 -5.0000e-01 -2.9365e-11 +5.0000e-01
+4.7727e-01 -1.8182e-01 +3.0682e-01 -6.8182e-02 -5.6818e-02
-1.3939e+00 +3.1818e+00 -2.8485e+00 +1.5152e-01 +5.1515e-01
Press return to continue.
Solving this system yields a unique
least squares solution, namely
Pinv * b
+1.0000
+0.2803
-6.0000
+0.4773
-1.3939
The coefficients a, b, c, d, e, of the curve are :
+1.000000000*x^2 +0.280303030*y^2 -6.000000000*x +0.477272727*y -1.393939394 = 0
Press return to continue.
Copy and paste in Octave:
function xy = f (x,y)
xy = +1.000000000*x^2 +0.280303030*y^2 -6.000000000*x +0.477272727*y -1.393939394;
endfunction
f (+1,+4)
f (+2,+5)
f (+3,-7)
f (+4,+5)