Linear Algebra and the C Language/a04n


Analysis of an electrical circuit

Studying the circuit in a clockwise direction, we can write:

At node A:

    Input = Output
       I1 = I2 + I3

At node B :

    Input = Output
       I3 = I4 + I5

At node C:

    Input = Output
  I2 + I5 = I6

At node D :

    Input = Output
  I6 + I4 = I1

Then:

a) +I1 -I2 -I3              = 0
           +I3 -I4 -I5      = 0
       +I2         +I5 -I6  = 0
  -I1          +I4     +I6  = 0

Left part of the circuit:

         90 -I2 R2 - I6 R61 = 0

b)          -I2 R2 - I6 R6  = -90

Top right part of the circuit:

      I2 R2 - I3 R3 - I5 R5 = 0

c)    I2 R2 - I3 R3 - I5 R5 = 0

Bottom right part of the circuit:

      I6 R6 + I5 R5 - I4 R4 = 0

d)  - I4 R4 + I5 R5 + I6 R6 = 0

External part of the circuit:

         90 - I3 R3 - I4 R4 = 0

e)          - I3 R3 - I4 R4 = -90

Then:

a)   +I1  -I2     -I3                            =   0
                  +I3      -I4    -I5            =   0
          +I2                     +I5     -I6    =   0
     -I1                   +I4            +I6    =   0
b)        -I2 R2                          -I6 R6 = -90
c)        +I2 R2  -I3 R3          -I5 R5         =   0 
d)                        -I4 R4  +I5 R5  +I6 R6 =   0
e)                -I3 R3  -I4 R4                 = -90

With R2 = 50, R3 = 20, R4 = 50, R5 = 10, R6 = 20

a)   +I1  -I2     -I3                            =   0
                  +I3      -I4    -I5            =   0
          +I2                     +I5     -I6    =   0
     -I1                   +I4            +I6    =   0
b)        -I2 50                          -I6 20 = -90
c)        +I2 50  -I3 20          -I5 10         =   0 
d)                        -I4 50  +I5 10  +I6 20 =   0
e)                -I3 20  -I4 50                 = -90

Let's rectify the system:

     I1   I2   I3   I4   I5   I6
   
     +1   -1   -1   +0   +0   +0   0  0     0
     +0   +0   +1   -1   -1   +0   0  0     0
     +0   +1   +0   +0   +1   -1   0  0     0
     -1   +0   +0   +1   +0   +1   0  0     0
     +0  -50   +0   +0   +0  -20   0  0   -90
     +0  +50  -20   +0  -10   +0   0  0     0 
     +0   +0   +0  -50  +10  +20   0  0     0
     +0   +0  -20  -50   +0   +0   0  0   -90

The code in C language:

double ab[RA*(CA+Cb)]={
//    I1    I2    I3    I4    I5    I6    
      +1,   -1,   -1,   +0,   +0,   +0,   0,  0,     0,
      +0,   +0,   +1,   -1,   -1,   +0,   0,  0,     0,
      +0,   +1,   +0,   +0,   +1,   -1,   0,  0,     0,
      -1,   +0,   +0,   +1,   +0,   +1,   0,  0,     0,
      +0,  -50,   +0,   +0,   +0,  -20,   0,  0,   -90,
      +0,  +50,  -20,   +0,  -10,   +0,   0,  0,     0, 
      +0,   +0,   +0,  -50,  +10,  +20,   0,  0,     0,
      +0,   +0,  -20,  -50,   +0,   +0,   0,  0,   -90,
};

The solution is given by solving the system:

 I1     I2     I3     I4     I5     I6 
+1.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +3.00 
+0.00  +1.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +1.00 
+0.00  +0.00  +1.00  +0.00  +0.00  +0.00  +0.00  +0.00  +2.00 
+0.00  +0.00  +0.00  +1.00  +0.00  +0.00  +0.00  +0.00  +1.00 
+0.00  +0.00  +0.00  +0.00  +1.00  +0.00  +0.00  +0.00  +1.00 
+0.00  +0.00  +0.00  +0.00  +0.00  +1.00  +0.00  +0.00  +2.00 
+0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00 
+0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00  +0.00 

I1 = 3,    I2 = 1,   I3 = 2,   I4 = 1,   I5 = 1,   I6 = 2