Linear Algebra and the C Language/a0bi


Install and compile this file in your working directory.

/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R3
#define   CA C3
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double   xy[6] ={1,  6,
                 2,  3,
                 3,  5 };

   
double ab[RA*(CA+Cb)]={
/* x**2    x**1    x**0    y   */
  +1,     +1,     +1,     +6,   
  +4,     +2,     +1,     +3,   
  +9,     +3,     +1,     +5,      
}; 

double **XY = ca_A_mR(xy,i_mR(R3,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x = invR * Q_T * b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c  of the curve   \n\n");
  printf("      y =  ax**2 + bx + c           (x**0 = 1) \n\n");
  printf(" that passes through the points.               \n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf(" Using the given points, we obtain this matrix.\n");
  printf("   x**2   x**1     x**0    y\n");
  p_mR(Ab,S7,P2,C6);
  stop();

    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6); 
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S12,P4,C6); 
  invgj_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S12,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf("\n The coefficients a, b, c of the curve are :  \n\n" 
         " y = %+.2fx**2  %+.2fx %+.2f\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1]);  
  
  stop();

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Presentation :
  Let's calculate the coefficients of a polynomial.
 
              y =  ax**2 + bx + c        
  
  Which passes through these three points.    
          
       x[1],  y[1] 
       x[2],  y[2] 
       x[3],  y[3] 

   Using the points we obtain the matrix:

     x**2      x**1      x**0      y

     x[1]**2   x[1]**1   x[1]**0   y[1]
     x[2]**2   x[2]**1   x[2]**0   y[2]
     x[3]**2   x[3]**1   x[3]**0   y[3]

  That we can write:

     x**2      x      1   y

     x[1]**2   x[1]   1   y[1]
     x[2]**2   x[2]   1   y[2]
     x[3]**2   x[3]   1   y[3]

   
   Let's use the QR_mR(); function to solve
   the system that will give us the coefficients a, b, c


Screen output example:
 Find the coefficients a, b, c  of the curve   

      y =  ax**2 + bx + c           (x**0 = 1) 

 that passes through the points.               

    x     y
   +1    +6 
   +2    +3 
   +3    +5 

 Using the given points, we obtain this matrix.
   x**2   x**1     x**0    y

  +1.00   +1.00   +1.00   +6.00 
  +4.00   +2.00   +1.00   +3.00 
  +9.00   +3.00   +1.00   +5.00 

 Press return to continue. 


 Q :
   +0.1010    +0.7184    +0.6882 
   +0.4041    +0.6025    -0.6882 
   +0.9091    -0.3476    +0.2294 

 R :
   +9.8995    +3.6365    +1.4142 
   -0.0000    +0.8806    +0.9733 
   +0.0000    +0.0000    +0.2294 

 Press return to continue. 


 Q_T :
 +1.0102e-01  +4.0406e-01  +9.0914e-01 
 +7.1841e-01  +6.0254e-01  -3.4762e-01 
 +6.8825e-01  -6.8825e-01  +2.2942e-01 

 invR :
 +1.0102e-01  -4.1714e-01  +1.1471e+00 
 +0.0000e+00  +1.1355e+00  -4.8177e+00 
 -0.0000e+00  -0.0000e+00  +4.3589e+00 

 Press return to continue. 


 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
     +2.50 
    -10.50 
    +14.00 


 The coefficients a, b, c of the curve are :  

 y = +2.50x**2  -10.50x +14.00

 Press return to continue.


Copy and paste in Octave:
function y = f (x)
  y = +2.50*x^2  -10.50*x +14.00;
endfunction

f (+1) 
f (+2)
f (+3)