Linear Algebra and the C Language/a0bn


Install and compile this file in your working directory.

/* ------------------------------------ */
/*  Save as :   c00f.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double   xy[10] ={
  1,   -2,
  2,   -2,
  3,    3,
  4,   -9,
  5,    4,      };

   
double ab[RA*(CA+Cb)]={
/* x**4    x**3    x**2    x**1    x**0    y   */
  +1,     +1,     +1,     +1,     +1,     -2,   
 +16,     +8,     +4,     +2,     +1,     -2,   
 +81,    +27,     +9,     +3,     +1,     +3,   
+256,    +64,    +16,     +4,     +1,     -9,   
+625,   +125,    +25,     +5,     +1,     +4,             
}; 

double **XY = ca_A_mR(xy,i_mR(R5,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x = invR * Q_T * b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c  of the curve \n\n");
  printf("   y =  ax**4 + bx**3 + cx**2 + dx + e       \n\n");
  printf(" that passes through the points.             \n\n");
  
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf(" Using the given points, we obtain this matrix.\n");
  printf("   x**4    x**3    x**2    x**1    x**0    y");
  p_mR(Ab,S7,P2,C6);
  stop();

    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6); 
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S12,P4,C6); 
  inv_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S12,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf("\n The coefficients a, b, c of the curve are :  \n\n" 
         " y = %+.2fx**4 %+.2fx**3 %+.2fx**2  %+.2fx %+.2f\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);  
  
  stop();

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Presentation :
  Let's calculate the coefficients of a polynomial.
 
              y =  ax**4 + bx**3 + cx**2 + dx + e        
  
         Which passes through these five points.    
          
       x[1],  y[1] 
       x[2],  y[2] 
       x[3],  y[3] 
       x[4],  y[4] 
       x[5],  y[5] 
       
  Using the points we obtain the matrix:

      x**4         x**3        x**2      x**1      x**0     y

     x[1]**4     x[1]**3     x[1]**2   x[1]**1   x[1]**0   y[1]
     x[2]**4     x[2]**3     x[2]**2   x[2]**1   x[2]**0   y[2]
     x[3]**4     x[3]**3     x[3]**2   x[3]**1   x[3]**0   y[3]
     x[4]**4     x[4]**3     x[4]**2   x[4]**1   x[4]**0   y[4]
     x[5]**4     x[5]**3     x[5]**2   x[5]**1   x[5]**0   y[5]

  That we can write:

       x**4          x**3        x**2     x     1    y

      x[1]**4       x[1]**3    x[1]**2   x[1]   1   y[1]
      x[2]**4       x[2]**3    x[2]**2   x[2]   1   y[2]
      x[3]**4       x[3]**3    x[3]**2   x[3]   1   y[3]
      x[4]**4       x[4]**3    x[4]**2   x[4]   1   y[4]
      x[5]**4       x[5]**3    x[5]**2   x[5]   1   y[5]   

     Let's use the QR_mR() function to solve
     the system that will give us the coefficients a, b, c, d, e


Screen output example:
 Find the coefficients a, b, c  of the curve 

   y =  ax**4 + bx**3 + cx**2 + dx + e       

 that passes through the points.             

    x     y
   +1    -2 
   +2    -2 
   +3    +3 
   +4    -9 
   +5    +4 

 Using the given points, we obtain this matrix.
   x**4    x**3    x**2    x**1    x**0    y
  +1.00   +1.00   +1.00   +1.00   +1.00   -2.00 
 +16.00   +8.00   +4.00   +2.00   +1.00   -2.00 
 +81.00  +27.00   +9.00   +3.00   +1.00   +3.00 
+256.00  +64.00  +16.00   +4.00   +1.00   -9.00 
+625.00 +125.00  +25.00   +5.00   +1.00   +4.00 

 Press return to continue. 


 Q :
   +0.0015    +0.0485    +0.4216    +0.8487    +0.3156 
   +0.0235    +0.2856    +0.7083    -0.1335    -0.6312 
   +0.1190    +0.6174    +0.2365    -0.3877    +0.6312 
   +0.3762    +0.6420    -0.4915    +0.3242    -0.3156 
   +0.9185    -0.3504    +0.1519    -0.0805    +0.0631 

 R :
 +680.4256  +142.3006   +30.1502    +6.5033    +1.4388 
   +0.0000   +16.2950    +8.2602    +3.2880    +1.2431 
   -0.0000    -0.0000    +1.3158    +1.3410    +1.0268 
   +0.0000    +0.0000    +0.0000    +0.3128    +0.5711 
   -0.0000    -0.0000    -0.0000    -0.0000    +0.0631 

 Press return to continue. 


 Q_T :
 +1.4697e-03  +2.3515e-02  +1.1904e-01  +3.7624e-01  +9.1854e-01 
 +4.8534e-02  +2.8560e-01  +6.1737e-01  +6.4201e-01  -3.5037e-01 
 +4.2165e-01  +7.0827e-01  +2.3651e-01  -4.9150e-01  +1.5186e-01 
 +8.4868e-01  -1.3354e-01  -3.8774e-01  +3.2419e-01  -8.0475e-02 
 +3.1560e-01  -6.3119e-01  +6.3119e-01  -3.1560e-01  +6.3119e-02 

 invR :
 +1.4697e-03  -1.2834e-02  +4.6895e-02  -9.6700e-02  +3.3138e-01 
 +0.0000e+00  +6.1368e-02  -3.8527e-01  +1.0067e+00  -4.0502e+00 
 -0.0000e+00  -0.0000e+00  +7.6002e-01  -3.2586e+00  +1.7121e+01 
 +0.0000e+00  +0.0000e+00  +0.0000e+00  +3.1973e+00  -2.8930e+01 
 -0.0000e+00  -0.0000e+00  -0.0000e+00  +0.0000e+00  +1.5843e+01 

 Press return to continue. 


 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
     +2.67 
    -30.33 
   +117.83 
   -181.17 
    +89.00 


 The coefficients a, b, c of the curve are :  

 y = +2.67x**4 -30.33x**3 +117.83x**2  -181.17x +89.00

 Press return to continue.


Copy and paste in Octave:
function y = f (x)
  y = +2.666665810*x^4 -30.333323719*x^3 +117.833298608*x^2 -181.166625268*x +88.999995106;
endfunction

f (+1) 
f (+2)
f (+3) 
f (+4) 
f (+5)