Linear Algebra and the C Language/a0cz
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as : c00c.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RCA RC6
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double a[RCA*RCA] ={
+0.567743563267, +0.304424089190, -0.059677700710, -0.203424101776, +0.267148131435, -0.190855616323,
+0.304424089190, +0.785604057676, +0.042029055301, +0.143264950247, -0.188143702858, +0.134413376479,
-0.059677700710, +0.042029055301, +0.991760844584, -0.028084908937, +0.036882704058, -0.026349692872,
-0.203424101776, +0.143264950247, -0.028084908937, +0.904266630484, +0.125722520384, -0.089818517482,
+0.267148131435, -0.188143702858, +0.036882704058, +0.125722520384, +0.834894016457, +0.117954799378,
-0.190855616323, +0.134413376479, -0.026349692872, -0.089818517482, +0.117954799378, +0.915730887532
};
double v[RCA*RCA] ={
+0.575801565025, -0.136763612579, -0.425812987594, +0.525729633538, -0.403913441448, +0.657462118097,
+0.817589479944, +0.000000000000, +0.000000000000, +0.000000000000, +0.000000000000, -0.463029094469,
+0.000000000000, +0.990603712023, +0.000000000000, +0.000000000000, +0.000000000000, +0.090769793525,
+0.000000000000, +0.000000000000, +0.904811195552, +0.000000000000, +0.000000000000, +0.309408095427,
+0.000000000000, +0.000000000000, +0.000000000000, +0.850651722164, +0.000000000000, -0.406332356012,
+0.000000000000, +0.000000000000, +0.000000000000, +0.000000000000, +0.914797208029, +0.290291426791
};
double **A = ca_A_mR(a, i_mR(RCA,RCA));
double **V = ca_A_mR(v, i_mR(RCA,RCA));
double **invV = invgj_mR(V, i_mR(RCA,RCA));
double **EValue = i_mR(RCA,RCA);
double **T = i_mR(RCA,RCA);
clrscrn();
printf(" A :");
p_mR(A, S8,P6, C6);
printf(" V :");
p_mR(V, S9,P6, C6);
printf(" EValue = invV * A * V");
mul_mR(invV,A,T);
mul_mR(T,V,EValue);
p_mR(EValue, S9,P6, C6);
stop();
clrscrn();
printf(" A :");
p_mR(A, S8,P6, C6);
printf(" A = V * EValue * invV (Just verify the computation)");
mul_mR(V,EValue,T);
mul_mR(T,invV,A);
p_mR(A, S8,P6, C6);
stop();
clrscrn();
printf(" V1 V2 V3 V4 V5 V6 :");
p_mR(V, S9,P6, C6);
printf(" EValue1 EValue2 EValue3 EValue4 EValue5 EValue6 ");
p_mR(EValue, S9,P6, C6);
printf(" det(V) = %.3e\n"
" det(V) != 0.00 V1,V2,V3,V4,V5 and V6 are linearly independent\n\n",
det_R(V));
stop();
clrscrn();
printf(" The matrix A projects the space in the direction\n"
" of the eigenvector V6 on a hyperplan determined\n"
" by the eigenvector V1,V2,V3,V4 and V5 if :\n\n"
" The eigenvector V1 has its eigenvalue equal to one and \n"
" The eigenvector V2 has its eigenvalue equal to one and \n"
" The eigenvector V3 has its eigenvalue equal to one and \n"
" The eigenvector V4 has its eigenvalue equal to one and \n"
" The eigenvector V5 has its eigenvalue equal to one and \n"
" The eigenvector V6 has its eigenvalue equal to zero and \n\n"
" If The vectors V1,V2,V3,V4,V5 and V6 are linearly independent\n\n");
stop();
f_mR(A);
f_mR(V);
f_mR(invV);
f_mR(T);
f_mR(EValue);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Screen output example:
A :
+0.567744 +0.304424 -0.059678 -0.203424 +0.267148 -0.190856
+0.304424 +0.785604 +0.042029 +0.143265 -0.188144 +0.134413
-0.059678 +0.042029 +0.991761 -0.028085 +0.036883 -0.026350
-0.203424 +0.143265 -0.028085 +0.904267 +0.125723 -0.089819
+0.267148 -0.188144 +0.036883 +0.125723 +0.834894 +0.117955
-0.190856 +0.134413 -0.026350 -0.089819 +0.117955 +0.915731
V :
+0.575802 -0.136764 -0.425813 +0.525730 -0.403913 +0.657462
+0.817589 +0.000000 +0.000000 +0.000000 +0.000000 -0.463029
+0.000000 +0.990604 +0.000000 +0.000000 +0.000000 +0.090770
+0.000000 +0.000000 +0.904811 +0.000000 +0.000000 +0.309408
+0.000000 +0.000000 +0.000000 +0.850652 +0.000000 -0.406332
+0.000000 +0.000000 +0.000000 +0.000000 +0.914797 +0.290291
EValue = invV * A * V
+1.000000 +0.000000 +0.000000 -0.000000 +0.000000 -0.000000
+0.000000 +1.000000 -0.000000 +0.000000 -0.000000 -0.000000
+0.000000 -0.000000 +1.000000 -0.000000 +0.000000 -0.000000
-0.000000 +0.000000 -0.000000 +1.000000 +0.000000 +0.000000
+0.000000 -0.000000 +0.000000 +0.000000 +1.000000 +0.000000
+0.000000 -0.000000 -0.000000 +0.000000 -0.000000 -0.000000
Press return to continue.
A :
+0.567744 +0.304424 -0.059678 -0.203424 +0.267148 -0.190856
+0.304424 +0.785604 +0.042029 +0.143265 -0.188144 +0.134413
-0.059678 +0.042029 +0.991761 -0.028085 +0.036883 -0.026350
-0.203424 +0.143265 -0.028085 +0.904267 +0.125723 -0.089819
+0.267148 -0.188144 +0.036883 +0.125723 +0.834894 +0.117955
-0.190856 +0.134413 -0.026350 -0.089819 +0.117955 +0.915731
A = V * EValue * invV (Just verify the computation)
+0.567744 +0.304424 -0.059678 -0.203424 +0.267148 -0.190856
+0.304424 +0.785604 +0.042029 +0.143265 -0.188144 +0.134413
-0.059678 +0.042029 +0.991761 -0.028085 +0.036883 -0.026350
-0.203424 +0.143265 -0.028085 +0.904267 +0.125723 -0.089819
+0.267148 -0.188144 +0.036883 +0.125723 +0.834894 +0.117955
-0.190856 +0.134413 -0.026350 -0.089819 +0.117955 +0.915731
Press return to continue.
V1 V2 V3 V4 V5 V6 :
+0.575802 -0.136764 -0.425813 +0.525730 -0.403913 +0.657462
+0.817589 +0.000000 +0.000000 +0.000000 +0.000000 -0.463029
+0.000000 +0.990604 +0.000000 +0.000000 +0.000000 +0.090770
+0.000000 +0.000000 +0.904811 +0.000000 +0.000000 +0.309408
+0.000000 +0.000000 +0.000000 +0.850652 +0.000000 -0.406332
+0.000000 +0.000000 +0.000000 +0.000000 +0.914797 +0.290291
EValue1 EValue2 EValue3 EValue4 EValue5 EValue6
+1.000000 +0.000000 +0.000000 -0.000000 +0.000000 -0.000000
+0.000000 +1.000000 -0.000000 +0.000000 -0.000000 -0.000000
+0.000000 -0.000000 +1.000000 -0.000000 +0.000000 -0.000000
-0.000000 +0.000000 -0.000000 +1.000000 +0.000000 +0.000000
+0.000000 -0.000000 +0.000000 +0.000000 +1.000000 +0.000000
+0.000000 -0.000000 -0.000000 +0.000000 -0.000000 -0.000000
det(V) = -8.674e-01
det(V) != 0.00 V1,V2,V3,V4,V5 and V6 are linearly independent
Press return to continue.
The matrix A projects the space in the direction
of the eigenvector V6 on a hyperplan determined
by the eigenvector V1,V2,V3,V4 and V5 if :
The eigenvector V1 has its eigenvalue equal to one and
The eigenvector V2 has its eigenvalue equal to one and
The eigenvector V3 has its eigenvalue equal to one and
The eigenvector V4 has its eigenvalue equal to one and
The eigenvector V5 has its eigenvalue equal to one and
The eigenvector V6 has its eigenvalue equal to zero and
If The vectors V1,V2,V3,V4,V5 and V6 are linearly independent
Press return to continue.