Nilpotent operator

In operator theory, a bounded operator T on a Banach space is said to be nilpotent if Tn = 0 for some positive integer n.[1] It is said to be quasinilpotent or topologically nilpotent if its spectrum σ(T) = {0}.

Examples

In the finite-dimensional case, i.e. when T is a square matrix (Nilpotent matrix) with complex entries, σ(T) = {0} if and only if T is similar to a matrix whose only nonzero entries are on the superdiagonal[2](this fact is used to prove the existence of Jordan canonical form). In turn this is equivalent to Tn = 0 for some n. Therefore, for matrices, quasinilpotency coincides with nilpotency.

This is not true when H is infinite-dimensional. Consider the Volterra operator, defined as follows: consider the unit square X = [0,1] × [0,1] ⊂ R2, with the Lebesgue measure m. On X, define the kernel function K by

The Volterra operator is the corresponding integral operator T on the Hilbert space L2(0,1) given by

The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that Tn f ≠ 0 (in the sense of L2) for all n. However, T is quasinilpotent. First notice that K is in L2(X, m), therefore T is compact. By the spectral properties of compact operators, any nonzero λ in σ(T) is an eigenvalue. But it can be shown that T has no nonzero eigenvalues, therefore T is quasinilpotent.

References

  1. Kreyszig, Erwin (1989). "Spectral Theory in Normed Spaces 7.5 Use of Complex Analysis in Spectral Theory, Problem 1. (Nilpotent operator)". Introductory Functional Analysis with Applications. Wiley. p. 393.
  2. Axler, Sheldon. "Nilpotent Operator" (PDF). Linear Algebra Done Right.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.