Sellmeier equation

The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium.

It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling dispersion.[1]

The equation

In its original and the most general form, the Sellmeier equation is given as

,

where n is the refractive index, λ is the wavelength, and Bi and Ci are experimentally determined Sellmeier coefficients. These coefficients are usually quoted for λ in micrometres. Note that this λ is the vacuum wavelength, not that in the material itself, which is λ/n. A different form of the equation is sometimes used for certain types of materials, e.g. crystals.

Each term of the sum representing an absorption resonance of strength Bi at a wavelength Ci. For example, the coefficients for BK7 below correspond to two absorption resonances in the ultraviolet, and one in the mid-infrared region. Close to each absorption peak, the equation gives non-physical values of n2 = ±∞, and in these wavelength regions a more precise model of dispersion such as Helmholtz's must be used.

If all terms are specified for a material, at long wavelengths far from the absorption peaks the value of n tends to

where εr is the relative permittivity of the medium.

For characterization of glasses the equation consisting of three terms is commonly used:[2][3]

As an example, the coefficients for a common borosilicate crown glass known as BK7 are shown below:

CoefficientValue
B11.03961212
B20.231792344
B31.01046945
C16.00069867×103 μm2
C22.00179144×102 μm2
C31.03560653×102 μm2

For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10−6 over the wavelengths' range[4] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample.[5] Additional terms are sometimes added to make the calculation even more precise.

Sometimes the Sellmeier equation is used in two-term form:[6]

Here the coefficient A is an approximation of the short-wavelength (e.g., ultraviolet) absorption contributions to the refractive index at longer wavelengths. Other variants of the Sellmeier equation exist that can account for a material's refractive index change due to temperature, pressure, and other parameters.

Coefficients

Table of coefficients of Sellmeier equation[7]
MaterialB1B2B3C1, μm2C2, μm2C3, μm2
borosilicate crown glass
(known as BK7)
1.039612120.2317923441.010469456.00069867×1032.00179144×102103.560653
sapphire
(for ordinary wave)
1.431349300.650547135.34140215.2799261×1031.42382647×102325.017834
sapphire
(for extraordinary wave)
1.50397590.550691416.59273795.48041129×1031.47994281×102402.89514
fused silica0.6961663000.4079426000.8974794004.67914826×1031.35120631×10297.9340025
Magnesium fluoride0.487551080.398750312.31203530.0018821780.008951888566.13559

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.