Tensor-vector identity - 1
![{\displaystyle [(\mathbf {v} \bullet \mathbf {a} )({\boldsymbol {S}}\bullet \mathbf {b} )]\cdot \mathbf {n} =\mathbf {a} \cdot [\{\mathbf {v} \otimes ({\boldsymbol {S}}^{T}\bullet \mathbf {n} )\}\cdot \mathbf {b} ]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/31a344970a0b7f91380ea49a642a8e1aa83d98c9.svg)
Proof:
Using the identity
we have
![{\displaystyle \mathbf {n} \cdot [(\mathbf {v} \bullet \mathbf {a} )({\boldsymbol {S}}\bullet \mathbf {b} )]=\mathbf {b} \cdot [(\mathbf {v} \cdot \mathbf {a} )({\boldsymbol {S}}^{T}\cdot \mathbf {n} )]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/a931704ed14f04f96186aa4ba841eef2af7a2ec1.svg)
Also, using the definition
we have
![{\displaystyle (\mathbf {v} \cdot \mathbf {a} )({\boldsymbol {S}}^{T}\cdot \mathbf {n} )=[({\boldsymbol {S}}^{T}\cdot \mathbf {n} )\otimes \mathbf {v} ]\cdot \mathbf {a} ~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/6e65e3102db7772453a9ccaac8a945abfcaf08bd.svg)
Therefore,
![{\displaystyle \mathbf {n} \cdot [(\mathbf {v} \bullet \mathbf {a} )({\boldsymbol {S}}\bullet \mathbf {b} )]=\mathbf {b} \cdot [\{({\boldsymbol {S}}^{T}\cdot \mathbf {n} )\otimes \mathbf {v} \}\cdot \mathbf {a} ]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/8dcf13178977ca8923a13c89badf31e252a29070.svg)
Using the identity
we have
![{\displaystyle \mathbf {b} \cdot [\{({\boldsymbol {S}}^{T}\cdot \mathbf {n} )\otimes \mathbf {v} \}\cdot \mathbf {a} ]=\mathbf {a} \cdot [\{({\boldsymbol {S}}^{T}\cdot \mathbf {n} )\otimes \mathbf {v} \}^{T}\cdot \mathbf {b} ]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/26578ac487fb2b6520938aa9e2e3b74095fdcbed.svg)
Finally, using the relation
, we get
![{\displaystyle \mathbf {a} \cdot [\{({\boldsymbol {S}}^{T}\cdot \mathbf {n} )\otimes \mathbf {v} \}^{T}\cdot \mathbf {b} ]=\mathbf {a} \cdot [\{\mathbf {v} \otimes ({\boldsymbol {S}}^{T}\cdot \mathbf {n} )\}\cdot \mathbf {b} ]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/9997ab1523c6dd6b53d23974b8ea7b7a226a4953.svg)
Hence,
![{\displaystyle {[(\mathbf {v} \bullet \mathbf {a} )({\boldsymbol {S}}\bullet \mathbf {b} )]\cdot \mathbf {n} =\mathbf {a} \cdot [\{\mathbf {v} \otimes ({\boldsymbol {S}}^{T}\bullet \mathbf {n} )\}\cdot \mathbf {b} ]}\qquad \qquad \qquad \square }](../_assets_/eb734a37dd21ce173a46342d1cc64c92/0ac235fbe48eff267f6e027fbea1dd91ea5fd1ab.svg)
Tensor-vector identity 2
Let
be a vector field and let
be a second-order tensor field. Let
and
be two arbitrary vectors. Show that
![{\displaystyle {\boldsymbol {\nabla }}\bullet [(\mathbf {v} \cdot \mathbf {a} )({\boldsymbol {S}}\cdot \mathbf {b} )]=\mathbf {a} \cdot [\{{\boldsymbol {\nabla }}\mathbf {v} \cdot {\boldsymbol {S}}+\mathbf {v} \otimes ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})\}\cdot \mathbf {b} ]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/7d08ec551dee6717ea19ddc9673fa3e2b12753f1.svg)
Proof:
Using the identity
we have
![{\displaystyle {\boldsymbol {\nabla }}\bullet [(\mathbf {v} \cdot \mathbf {a} )({\boldsymbol {S}}\cdot \mathbf {b} )]=({\boldsymbol {S}}\cdot \mathbf {b} )\cdot {\boldsymbol {\nabla }}(\mathbf {v} \cdot \mathbf {a} )+(\mathbf {v} \cdot \mathbf {a} )~{\boldsymbol {\nabla }}\bullet ({\boldsymbol {S}}\cdot \mathbf {b} )~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/fe8041dc2d467e6660bbae066c61384ef0b5981f.svg)
From the identity
,
we have
.
Since
is constant,
, and we have

From the relation
we have
![{\displaystyle ({\boldsymbol {S}}\cdot \mathbf {b} )\cdot ({\boldsymbol {\nabla }}\mathbf {v} ^{T}\cdot \mathbf {a} )=\mathbf {a} \cdot [{\boldsymbol {\nabla }}\mathbf {v} \cdot ({\boldsymbol {S}}\cdot \mathbf {b} )]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/3a44e4b408226b3cb577d3199125d6eae2db7ff7.svg)
Using the relation
, we
get

Therefore, the final form of the first term is
![{\displaystyle ({\boldsymbol {S}}\cdot \mathbf {b} )\cdot {\boldsymbol {\nabla }}(\mathbf {v} \cdot \mathbf {a} )=\mathbf {a} \cdot [({\boldsymbol {\nabla }}\mathbf {v} \cdot {\boldsymbol {S}})\cdot \mathbf {b} ]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/c99b14395e99482d694b6e938f41f57d013dec2c.svg)
For the second term, from the identity
we get,
.
Since
is constant,
, and we have
![{\displaystyle (\mathbf {v} \cdot \mathbf {a} )~{\boldsymbol {\nabla }}\bullet ({\boldsymbol {S}}\cdot \mathbf {b} )=(\mathbf {v} \cdot \mathbf {a} )~[\mathbf {b} \cdot ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})]=\mathbf {a} \cdot [\{\mathbf {b} \cdot ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})\}~\mathbf {v} ]~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/ec683171beeb00e1b558fe3e092e3bd5f2804c95.svg)
From the definition
, we get
![{\displaystyle [\mathbf {b} \cdot ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})]~\mathbf {v} =[\mathbf {v} \otimes ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})]\cdot \mathbf {b} ~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/aebdf83a255bec52e82d681f983beb962abfbb25.svg)
Therefore, the final form of the second term is
![{\displaystyle (\mathbf {v} \cdot \mathbf {a} )~{\boldsymbol {\nabla }}\bullet ({\boldsymbol {S}}\cdot \mathbf {b} )=\mathbf {a} \cdot [\mathbf {v} \otimes ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})]\cdot \mathbf {b} ~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/e263dc37ea8e3edc44fa2c21a1009fb71ab58597.svg)
Adding the two terms, we get
![{\displaystyle {\boldsymbol {\nabla }}\bullet [(\mathbf {v} \cdot \mathbf {a} )({\boldsymbol {S}}\cdot \mathbf {b} )]=\mathbf {a} \cdot [({\boldsymbol {\nabla }}\mathbf {v} \cdot {\boldsymbol {S}})\cdot \mathbf {b} ]+\mathbf {a} \cdot [\mathbf {v} \otimes ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})]\cdot \mathbf {b} ~.}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/50120190e3fffc149170abaa25a4d1e27a8b4845.svg)
Therefore,
![{\displaystyle {{\boldsymbol {\nabla }}\bullet [(\mathbf {v} \cdot \mathbf {a} )({\boldsymbol {S}}\cdot \mathbf {b} )]=\mathbf {a} \cdot [\{{\boldsymbol {\nabla }}\mathbf {v} \cdot {\boldsymbol {S}}+\mathbf {v} \otimes ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})\}\cdot \mathbf {b} ]}\qquad \qquad \qquad \square }](../_assets_/eb734a37dd21ce173a46342d1cc64c92/6631dc7cac9b8d11fa81cd0396e4bb3b47763edc.svg)