tiara as jewellery
A tiara is a number triangle whose entries for row
n
{\displaystyle n}
correspond to the weight of an
n
{\displaystyle n}
-ary Boolean function.
The weight is often shown as an integer
k
{\displaystyle k}
, but it is essentially a fraction
k
n
{\displaystyle {\frac {k}{n}}}
.
E.g. balanced BF have weight
1
2
{\displaystyle {\frac {1}{2}}}
, and the tautology has weight 1.
The column index can also represent the nonlinearity of a BF .
This leads to the unusual tiara Amber , with non-zero enries only in the left half.
An important property of a tiara is the regular triangle of unit fractions, which shall be called its slab . They are shown in the boxes below. See also the example for Emerald .
It is not usually an otherwise known triangle, but for Ruby it is ExPascal , and for Opal it is A289537 with row sums A182176 (number of affine subspaces of F 2 n .)
The names of tiaras and other sequences in this article are likely to be changed again.
The most obvious tiara is that of all Boolean functions.
Row
n
{\displaystyle n}
is row
2
n
{\displaystyle 2^{n}}
of Pascal's triangle , and the row sums are
2
2
n
{\displaystyle 2^{2^{n}}}
.
In the triangle of unit fractions
T
(
n
,
k
)
=
(
2
n
2
n
−
k
)
{\displaystyle T(n,k)={\binom {2^{n}}{2^{n-k}}}}
.
tiara Clay row sums Grass (A001146 )
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sums
0
1
1
2
1
1
2
1
4
2
1
4
6
4
1
16
3
1
8
28
56
70
56
28
8
1
256
4
1
16
120
560
1820
4368
8008
11440
12870
11440
8008
4368
1820
560
120
16
1
65536
5
1
32
496
4960
35960
201376
906192
3365856
10518300
28048800
64512240
129024480
225792840
347373600
471435600
565722720
601080390
565722720
471435600
347373600
225792840
129024480
64512240
28048800
10518300
3365856
906192
201376
35960
4960
496
32
1
4294967296
plain text
rows:
[
1, 1],
[
1, 2, 1],
[
1, 4, 6, 4, 1],
[
1, 8, 28, 56, 70, 56, 28, 8, 1],
[
1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1],
[
1, 32, 496, 4960, 35960, 201376, 906192, 3365856, 10518300, 28048800, 64512240, 129024480, 225792840, 347373600, 471435600, 565722720, 601080390, 565722720, 471435600, 347373600, 225792840, 129024480, 64512240, 28048800, 10518300, 3365856, 906192, 201376, 35960, 4960, 496, 32, 1]
central values: (rational weight = 1/2)
[2, 6, 70, 12870, 601080390]
diagonal: (integer weight = arity)
[
1, 2, 6, 56, 1820, 201376]
row sums:
[2,
4,
16,
256,
65536,
4294967296]
unit fractions:
[1],
[1, 2],
[1, 6, 4],
[1, 70, 28, 8],
[1, 12870, 1820, 120, 16],
[1, 601080390, 10518300, 35960, 496, 32]
row sums of unit fractions: [1, 3, 11, 107, 14827, 611635179]
An important subset are the dense BF, usually called non-degenerate:
tiara Onyx row sums Lotus (A000371 )
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sums
0
1
1
2
1
0
1
1
2
2
0
1
4
4
1
10
3
0
1
13
44
67
56
28
8
1
218
4
0
1
40
360
1546
4144
7896
11408
12866
11440
8008
4368
1820
560
120
16
1
64594
5
0
1
121
2680
27550
180096
866432
3308736
10453960
27991600
64472200
129002640
225783740
347370800
471435000
565722640
601080385
565722720
471435600
347373600
225792840
129024480
64512240
28048800
10518300
3365856
906192
201376
35960
4960
496
32
1
4294642034
plain text
rows:
[
1, 1],
[
0, 1, 1],
[
0, 1, 4, 4, 1],
[
0, 1, 13, 44, 67, 56, 28, 8, 1],
[
0, 1, 40, 360, 1546, 4144, 7896, 11408, 12866, 11440, 8008, 4368, 1820, 560, 120, 16, 1],
[
0, 1, 121, 2680, 27550, 180096, 866432, 3308736, 10453960, 27991600, 64472200, 129002640, 225783740, 347370800, 471435000, 565722640, 601080385, 565722720, 471435600, 347373600, 225792840, 129024480, 64512240, 28048800, 10518300, 3365856, 906192, 201376, 35960, 4960, 496, 32, 1]
central values: (rational weight = 1/2)
[1, 4, 67, 12866, 601080385]
diagonal: (integer weight = arity)
[
1, 1, 4, 44, 1546, 180096]
row sums:
[2,
2,
10,
218,
64594,
4294642034]
unit fractions:
[1],
[1, 1],
[1, 4, 1],
[1, 67, 13, 1],
[1, 12866, 1546, 40, 1],
[1, 601080385, 10453960, 27550, 121, 1]
row sums of unit fractions: [1, 2, 6, 82, 14454, 611562018]
equivalence classes
The central column in Saffron .
tiara Emerald (A054724 ) row sums Thyme (A000231 )
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sums
0
1
1
2
1
1
1
1
3
2
1
1
3
1
1
7
3
1
1
7
7
14
7
7
1
1
46
4
1
1
15
35
140
273
553
715
870
715
553
273
140
35
15
1
1
4336
5
1
1
31
155
1240
6293
28861
105183
330460
876525
2020239
4032015
7063784
10855425
14743445
17678835
18796230
17678835
14743445
10855425
7063784
4032015
2020239
876525
330460
105183
28861
6293
1240
155
31
1
1
134281216
plain text
rows:
[
1, 1],
[
1, 1, 1],
[
1, 1, 3, 1, 1],
[
1, 1, 7, 7, 14, 7, 7, 1, 1],
[
1, 1, 15, 35, 140, 273, 553, 715, 870, 715, 553, 273, 140, 35, 15, 1, 1],
[
1, 1, 31, 155, 1240, 6293, 28861, 105183, 330460, 876525, 2020239, 4032015, 7063784, 10855425, 14743445, 17678835, 18796230, 17678835, 14743445, 10855425, 7063784, 4032015, 2020239, 876525, 330460, 105183, 28861, 6293, 1240, 155, 31, 1, 1]
central values: (rational weight = 1/2)
[1, 3, 14, 870, 18796230]
diagonal: (integer weight = arity)
[
1, 1, 3, 7, 140, 6293]
row sums:
[2,
3,
7,
46,
4336,
134281216]
unit fractions:
[1],
[1, 1],
[1, 3, 1],
[1, 14, 7, 1],
[1, 870, 140, 15, 1],
[1, 18796230, 330460, 1240, 31, 1]
row sums of unit fractions: [1, 2, 5, 23, 1027, 19127963]
T
(
n
,
k
)
{\displaystyle T(n,k)}
is the number of
k
{\displaystyle k}
-subsets of
{
0...2
n
−
1
}
{\displaystyle \{0...2^{n}-1\}}
whose bitwise XOR is 0. The row sums are
2
2
n
−
n
{\displaystyle 2^{2^{n}-n}}
.
E.g. T(4, 3) = 35 is the number of 3-subsets of 0...15 whose bitwise XOR is 0.
Those are: (1, 2, 3), (1, 4, 5), (1, 6, 7), (1, 8, 9), (1, 10, 11), (1, 12, 13), (1, 14, 15), (2, 4, 6), (2, 5, 7), (2, 8, 10), (2, 9, 11), (2, 12, 14), (2, 13, 15), (3, 4, 7), (3, 5, 6), (3, 8, 11), (3, 9, 10), (3, 12, 15), (3, 13, 14), (4, 8, 12), (4, 9, 13), (4, 10, 14), (4, 11, 15), (5, 8, 13), (5, 9, 12), (5, 10, 15), (5, 11, 14), (6, 8, 14), (6, 9, 15), (6, 10, 12), (6, 11, 13), (7, 8, 15), (7, 9, 14), (7, 10, 13), (7, 11, 12)
The central column is A340259 .
tiara Amethyst (A340312 ) row sums A300361
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sums
0
1
1
2
1
1
1
0
2
2
1
1
0
1
1
4
3
1
1
0
7
14
7
0
1
1
32
4
1
1
0
35
140
273
448
715
870
715
448
273
140
35
0
1
1
4096
5
1
1
0
155
1240
6293
27776
105183
330460
876525
2011776
4032015
7063784
10855425
14721280
17678835
18796230
17678835
14721280
10855425
7063784
4032015
2011776
876525
330460
105183
27776
6293
1240
155
0
1
1
134217728
plain text
rows:
[
1, 1],
[
1, 1, 0],
[
1, 1, 0, 1, 1],
[
1, 1, 0, 7, 14, 7, 0, 1, 1],
[
1, 1, 0, 35, 140, 273, 448, 715, 870, 715, 448, 273, 140, 35, 0, 1, 1],
[
1, 1, 0, 155, 1240, 6293, 27776, 105183, 330460, 876525, 2011776, 4032015, 7063784, 10855425, 14721280, 17678835, 18796230, 17678835, 14721280, 10855425, 7063784, 4032015, 2011776, 876525, 330460, 105183, 27776, 6293, 1240, 155, 0, 1, 1]
central values: (rational weight = 1/2)
[1, 0, 14, 870, 18796230]
diagonal: (integer weight = arity)
[
1, 1, 0, 7, 140, 6293]
row sums:
[2,
2,
4,
32,
4096,
134217728]
unit fractions:
[1],
[0, 1],
[1, 0, 1],
[1, 14, 0, 1],
[1, 870, 140, 0, 1],
[1, 18796230, 330460, 1240, 0, 1]
row sums of unit fractions: [1, 1, 2, 16, 1012, 19127932]
The central column is A000721 .
tiara Diamond (A039754 ) row sums A000616
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sums
0
1
1
2
1
1
1
1
3
2
1
1
2
1
1
6
3
1
1
3
3
6
3
3
1
1
22
4
1
1
4
6
19
27
50
56
74
56
50
27
19
6
4
1
1
402
5
1
1
5
10
47
131
472
1326
3779
9013
19963
38073
65664
98804
133576
158658
169112
158658
133576
98804
65664
38073
19963
9013
3779
1326
472
131
47
10
5
1
1
1228158
plain text
rows:
[
1, 1],
[
1, 1, 1],
[
1, 1, 2, 1, 1],
[
1, 1, 3, 3, 6, 3, 3, 1, 1],
[
1, 1, 4, 6, 19, 27, 50, 56, 74, 56, 50, 27, 19, 6, 4, 1, 1],
[
1, 1, 5, 10, 47, 131, 472, 1326, 3779, 9013, 19963, 38073, 65664, 98804, 133576, 158658, 169112, 158658, 133576, 98804, 65664, 38073, 19963, 9013, 3779, 1326, 472, 131, 47, 10, 5, 1, 1]
central values: (rational weight = 1/2)
[1, 2, 6, 74, 169112]
diagonal: (integer weight = arity)
[
1, 1, 2, 3, 19, 131]
row sums:
[2,
3,
6,
22,
402,
1228158]
unit fractions:
[1],
[1, 1],
[1, 2, 1],
[1, 6, 3, 1],
[1, 74, 19, 4, 1],
[1, 169112, 3779, 47, 5, 1]
row sums of unit fractions: [1, 2, 4, 11, 99, 172945]
tiara Garnet (A052265 ) row sums DubAnise (A003180 )
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sums
0
1
1
2
1
1
2
1
4
2
1
3
4
3
1
12
3
1
4
9
16
20
16
9
4
1
80
4
1
5
17
52
136
284
477
655
730
655
477
284
136
52
17
5
1
3984
5
1
6
28
134
625
2674
10195
34230
100577
258092
579208
1140090
1974438
3016994
4077077
4881092
5182326
4881092
4077077
3016994
1974438
1140090
579208
258092
100577
34230
10195
2674
625
134
28
6
1
37333248
plain text
rows:
[
1, 1],
[1, 2, 1],
[1, 3, 4, 3, 1],
[1, 4, 9, 16, 20, 16, 9, 4, 1],
[1, 5, 17, 52, 136, 284, 477, 655, 730, 655, 477, 284, 136, 52, 17, 5, 1],
[1, 6, 28, 134, 625, 2674, 10195, 34230, 100577, 258092, 579208, 1140090, 1974438, 3016994, 4077077, 4881092, 5182326, 4881092, 4077077, 3016994, 1974438, 1140090, 579208, 258092, 100577, 34230, 10195, 2674, 625, 134, 28, 6, 1
]
central values: (rational weight = 1/2)
[2, 4, 20, 730, 5182326]
diagonal: (integer weight = arity)
[
1, 2, 4, 16, 136, 2674]
row sums:
[2,
4,
12,
80,
3984,
37333248]
unit fractions:
[1],
[1, 2],
[1, 4, 3],
[1, 20, 9, 4],
[1, 730, 136, 17, 5],
[1
, 5182326, 100577, 625, 28, 6]
row sums of unit fractions: [1, 3, 8, 34, 889, 5283563]
oddacity and gender
Gender of Boolean functions § oddacity and gender
0
1
2
3
4
female
1
1
3
97
32199
evenacious female
1
1
1
57
30537
oddacious female
0
0
2
40
1662
oddacious male
1
3
13
159
33337
oddacious
1
3
15
199
34999
all
2
4
16
256
65536
tiara NonRuby row sums Primula (A246537 )
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sums
0
1
0
1
1
1
0
0
1
2
1
0
2
0
0
3
3
1
0
16
0
64
0
16
0
0
97
4
1
0
88
0
1796
0
7784
0
12862
0
7784
0
1796
0
88
0
0
32199
plain text
rows:
[
1, 0],
[1, 0, 0],
[1, 0, 2, 0, 0],
[1, 0, 16, 0, 64, 0, 16, 0, 0],
[1, 0, 88, 0, 1796, 0, 7784, 0, 12862, 0, 7784, 0, 1796, 0, 88, 0, 0
]
central values: (rational weight = 1/2)
[0, 2, 64, 12862]
diagonal: (integer weight = arity)
[
1, 0, 2, 0, 1796]
row sums:
[1,
1,
3,
97,
32199]
unit fractions:
[0],
[0, 0],
[0, 2, 0],
[0, 64, 16, 0],
[0
, 12862, 1796, 88, 0]
row sums of unit fractions: [0, 0, 2, 80, 14746]
tiara NonOpal
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sums
0
1
0
1
1
1
0
0
1
2
1
0
0
0
0
1
3
1
0
0
0
56
0
0
0
0
57
4
1
0
0
0
1680
0
7168
0
12840
0
7168
0
1680
0
0
0
0
30537
plain text
rows:
[
1, 0],
[1, 0, 0],
[1, 0, 0, 0, 0],
[1, 0, 0, 0, 56, 0, 0, 0, 0],
[1, 0, 0, 0, 1680, 0, 7168, 0, 12840, 0, 7168, 0, 1680, 0, 0, 0, 0
]
central values: (rational weight = 1/2)
[0, 0, 56, 12840]
diagonal: (integer weight = arity)
[
1, 0, 0, 0, 1680]
row sums:
[1,
1,
1,
57,
30537]
unit fractions:
[0],
[0, 0],
[0, 0, 0],
[0, 56, 0, 0],
[0
, 12840, 1680, 0, 0]
row sums of unit fractions: [0, 0, 0, 56, 14520]
tiara Jade
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sums
0
0
0
0
1
0
0
0
0
2
0
0
2
0
0
2
3
0
0
16
0
8
0
16
0
0
40
4
0
0
88
0
116
0
616
0
22
0
616
0
116
0
88
0
0
1662
plain text
rows:
[
0, 0],
[0, 0, 0],
[0, 0, 2, 0, 0],
[0, 0, 16, 0, 8, 0, 16, 0, 0],
[0, 0, 88, 0, 116, 0, 616, 0, 22, 0, 616, 0, 116, 0, 88, 0, 0
]
central values: (rational weight = 1/2)
[0, 2, 8, 22]
diagonal: (integer weight = arity)
[
0, 0, 2, 0, 116]
row sums:
[0,
0,
2,
40,
1662]
unit fractions:
[0],
[0, 0],
[0, 2, 0],
[0, 8, 16, 0],
[0
, 22, 116, 88, 0]
row sums of unit fractions: [0, 0, 2, 24, 226]
tiara Ruby row sums HalfCrocus (A246418 )
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sums
0
0
1
1
1
0
2
1
3
2
0
4
4
4
1
13
3
0
8
12
56
6
56
12
8
1
159
4
0
16
32
560
24
4368
224
11440
8
11440
224
4368
24
560
32
16
1
33337
plain text
rows:
[
0, 1],
[0, 2, 1],
[0, 4, 4, 4, 1],
[0, 8, 12, 56, 6, 56, 12, 8, 1],
[0, 16, 32, 560, 24, 4368, 224, 11440, 8, 11440, 224, 4368, 24, 560, 32, 16, 1
]
central values: (rational weight = 1/2)
[2, 4, 6, 8]
diagonal: (integer weight = arity)
[
0, 2, 4, 56, 24]
row sums:
[1,
3,
13,
159,
33337]
unit fractions:
[1],
[1, 2],
[1, 4, 4],
[1, 6, 12, 8],
[1
, 8, 24, 32, 16]
row sums of unit fractions: [1, 3, 9, 27, 81]
tiara Opal
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sums
0
0
1
1
1
0
2
1
3
2
0
4
6
4
1
15
3
0
8
28
56
14
56
28
8
1
199
4
0
16
120
560
140
4368
840
11440
30
11440
840
4368
140
560
120
16
1
34999
plain text
rows:
[
0, 1],
[0, 2, 1],
[0, 4, 6, 4, 1],
[0, 8, 28, 56, 14, 56, 28, 8, 1],
[0, 16, 120, 560, 140, 4368, 840, 11440, 30, 11440, 840, 4368, 140, 560, 120, 16, 1
]
central values: (rational weight = 1/2)
[2, 6, 14, 30]
diagonal: (integer weight = arity)
[
0, 2, 6, 56, 140]
row sums:
[1,
3,
15,
199,
34999]
unit fractions:
[1],
[1, 2],
[1, 6, 4],
[1, 14, 28, 8],
[1
, 30, 140, 120, 16]
row sums of unit fractions: [1, 3, 11, 51, 307]
mentor permutation
These tiaras count the fixed points of the mentor permutation . (Both have the same row sums.)
Flint is for the permutation between Zhegalkin indices, and Slate for the one between truth tables. The latter is symmetric.
tiara Flint
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sums
0
1
1
2
1
1
1
0
2
2
1
4
6
4
1
16
3
1
4
9
16
19
12
3
0
0
64
4
1
5
25
85
170
226
226
170
85
25
5
1
0
0
0
0
0
1024
plain text
rows:
[
1, 1],
[
1, 1, 0],
[
1, 4, 6, 4, 1],
[
1, 4, 9, 16, 19, 12, 3, 0, 0],
[
1, 5, 25, 85, 170, 226, 226, 170, 85, 25, 5, 1, 0, 0, 0, 0, 0]
central values: (rational weight = 1/2)
[1, 6, 19, 85]
diagonal: (integer weight = arity)
[
1, 1, 6, 16, 170]
row sums:
[2,
2,
16,
64,
1024]
unit fractions:
[1],
[0, 1],
[1, 6, 4],
[0, 19, 9, 4],
[0, 85, 170, 25, 5]
row sums of unit fractions: [1, 1, 11, 32, 285]
tiara Slate
integer weight
w
a
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
sums
0
1
1
2
1
1
0
1
2
2
1
4
6
4
1
16
3
1
0
12
0
38
0
12
0
1
64
4
1
0
0
0
60
0
256
0
390
0
256
0
60
0
0
0
1
1024
plain text
rows:
[
1, 1],
[
1, 0, 1],
[
1, 4, 6, 4, 1],
[
1, 0, 12, 0, 38, 0, 12, 0, 1],
[
1, 0, 0, 0, 60, 0, 256, 0, 390, 0, 256, 0, 60, 0, 0, 0, 1]
central values: (rational weight = 1/2)
[0, 6, 38, 390]
diagonal: (integer weight = arity)
[
1, 0, 6, 0, 60]
row sums:
[2,
2,
16,
64,
1024]
unit fractions:
[1],
[1, 0],
[1, 6, 4],
[1, 38, 12, 0],
[1, 390, 60, 0, 0]
row sums of unit fractions: [1, 1, 11, 51, 451]