Triangle Larch

Studies of Boolean functions
sequences related to Boolean functions

Triangle Larch

triangle Larch    row sums [[No link yet!|ShortAster]]
k
n
0 1 2 3 4 5 6 7 8 9 sums
0 1 1
1 1 1 2
2 2 3 1 6
3 6 12 7 1 26
4 26 64 52 15 1 158
5 158 460 476 204 31 1 1330
6 1330 4464 5596 3180 780 63 1 15414
7 15414 58604 86308 61196 20940 2988 127 1 245578
8 245578 1043968 1767972 1505596 666316 141612 11564 255 1 5382862
9 5382862 25327980 48554444 48385900 26414892 7591340 997740 45228 511 1 162700898

Larch = BirchPascal            compare Oak = PascalBirch

This triangle may not be important. But it seems interesting, because Aster appears both as its left column and (shortened) as its row sums.

Triangle LarchInv

triangle LarchInv
k
n
0 1 2 3 4 5 6 7 8 9 sums
0 1 1
1 -1 1 0
2 1 -3 1 -1
3 -1 9 -7 1 2
4 1 -43 53 -15 1 -3
5 -1 465 -691 261 -31 1 4
6 1 -12051 18857 -7923 1173 -63 1 -5
7 -1 691033 -1097887 479257 -77283 5013 -127 1 6
8 1 -83344059 133209181 -59060551 9866249 -691395 20821 -255 1 -7
9 -1 20649267873 -33093267915 14775697725 -2507730087 181841161 -5893315 85077 -511 1 8

This is the inverse of Larch:   Larch−1 = Pascal−1 ∘ Birch−1
The inverse of Birch is SignedEukalyptus.

Triangle AbsLarchInv

triangle AbsLarchInv    row sums Campanula (A006896)
k
n
0 1 2 3 4 5 6 7 8 9 sums
0 1 1
1 1 1 2
2 1 3 1 5
3 1 9 7 1 18
4 1 43 53 15 1 113
5 1 465 691 261 31 1 1450
6 1 12051 18857 7923 1173 63 1 40069
7 1 691033 1097887 479257 77283 5013 127 1 2350602
8 1 83344059 133209181 59060551 9866249 691395 20821 255 1 286192513
9 1 20649267873 33093267915 14775697725 2507730087 181841161 5893315 85077 511 1 71213783666


Sequence Campanula

0 1 2 3 4 5 6 7 9 9
Campanula (A006896) 1 2 5 18 113 1450 40069 2350602 286192513 71213783666
ReducedCampanula (A004140) 0 1 4 17 112 1449 40068 2350601 286192512 71213783665