Triangle Lime

Studies of Boolean functions
sequences related to seals

Elm is the summation of Lime, which is the turned summation of Magnolia. Compare sequence Heather.

Triangles with n up to 25 are shown on this subpage.

Triangles Elm and Lime

Elm should not be confused with Pascal's triangle. Its contains bigger entries in rows ≥ 6. The differences are in A250002.

🌊    triangle Elm (A076831)    row sums Clover (A076766)
k
n
0 1 2 3 4 5 6 7 sums
0 1 1
1 1 1 2
2 1 2 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
6 1 6 16 22 16 6 1 68
7 1 7 23 43 43 23 7 1 148
💧    triangle Lime (~A034253)    row sums Heather (~A034343)
k
n
0 1 2 3 4 5 6 7 sums
0 1 1
1 0 1 1
2 0 1 1 2
3 0 1 2 1 4
4 0 1 3 3 1 8
5 0 1 4 6 4 1 16
6 0 1 6 12 11 5 1 36
7 0 1 7 21 27 17 6 1 80

Compare triangle MaimedElm.

The rows of Lime sum up to those of Tilia.

(a, d) ↦ houses Elm(a, d)
Lime(a, d)
is the number of houses of the seals with arity
adicity
a and depth d.

Triangles TurnedLime and Magnolia

 

🌊    triangle TurnedLime (~A034253)     row sums Heather (~A034343)
k
n
0 1 2 3 4 5 6 7 8 9 10 11 12 sums
0 1 1
1 1 0 1
2 1 1 0 2
3 1 2 1 0 4
4 1 3 3 1 0 8
5 1 4 6 4 1 0 16
6 1 5 11 12 6 1 0 36
7 1 6 17 27 21 7 1 0 80
8 1 7 25 54 63 34 9 1 0 194
9 1 8 35 99 163 134 54 11 1 0 506
10 1 9 47 170 385 465 276 82 13 1 0 1449
11 1 10 61 277 847 1472 1283 544 120 15 1 0 4631
12 1 11 78 436 1775 4408 5676 3480 1048 174 18 1 0 17106

 

💧    triangle Magnolia    row sums Lavender
k
n
0 1 2 3 4 5 6 7 8 9 10 11 12 sums
0 1 1
1 0 0 0
2 0 1 0 1
3 0 1 1 0 2
4 0 1 2 1 0 4
5 0 1 3 3 1 0 8
6 0 1 5 8 5 1 0 20
7 0 1 6 15 15 6 1 0 44
8 0 1 8 27 42 27 8 1 0 114
9 0 1 10 45 100 100 45 10 1 0 312
10 0 1 12 71 222 331 222 71 12 1 0 943
11 0 1 14 107 462 1007 1007 462 107 14 1 0 3182
12 0 1 17 159 928 2936 4393 2936 928 159 17 1 0 12475
pyramids in hyperpyramids Wisteria and WisteriaDrop

All entries in WisteriaDrop come from triangle Magnolia.
In Wisteria that is almost the same, but some entries are multiplied.

? Do these triangles on their own count anything?

The following two lines show some similarity between column 2 of Magnolia (above) and A045919, the partial sum of the Goldbach numbers (below).

0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 17, 19, 22, 25, 28, 31, 35, 38,   42, 46,   50, 54, 59, 63
0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 17, 20, 23, 25, 28, 30, 34, 38, 40, 43, 47, 50, 54, 59, 63