List of fusion experiments

Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.

The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of 1018 to 1022 m−3 and the linear dimensions in the range of 0.1 to 10 m. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.

In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of 1031 to 1033 m−3 and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or 104 times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.

Magnetic confinement

Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.

Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.

The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.

Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.

The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.

Toroidal machine

Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.

Tokamak[1]

Device nameStatusConstructionOperationLocationOrganisationMajor/minor radiusB-fieldPlasma currentPurposeImage
T-1 (Tokamak-1)[2]Shut down19571958–1959 MoscowKurchatov Institute0.625 m/0.13 m1 T0.04 MAFirst tokamak
T-2 (Tokamak-2)[2]Recycled →FT-119591960–1970 MoscowKurchatov Institute0.62 m/0.22 m1 T0.04 MA
T-3 (Tokamak-3)[2]Shut down19601962–? MoscowKurchatov Institute1 m/0.12 m3.5 T0.15 MAOvercame Bohm diffusion by a factor of 10, temperature 10 MK, confinement time 10 ms
T-5 (Tokamak-5)[2]Shut down ?1962–1970 MoscowKurchatov Institute0.625 m/0.15 m1.2 T0.06 MAInvestigation of plasma equilibrium in vertical and horizontal direction
TM-1Shut down ? ? MoscowKurchatov Institute
TM-2Shut down ?1965 MoscowKurchatov Institute
TM-3Shut down ?1970 MoscowKurchatov Institute
FT-1[2]Recycled →CASTORT-21972–2002 Saint PetersburgIoffe Institute0.62 m/0.22 m1.2 T0.05 MA
ST (Symmetric Tokamak)Shut downModel C1970–1974 PrincetonPrinceton Plasma Physics Laboratory1.09 m/0.13 m5.0 T0.13 MAFirst American tokamak, converted from Model C stellarator
T-6 (Tokamak-6)Shut down ?1970–1974 MoscowKurchatov Institute0.7 m/0.25 m1.5 T0.22 MA
TUMAN-2, 2AShut down ?1971–1985 Saint PetersburgIoffe Institute0.4 m/0.08 m1.5 T0.012 MA
ORMAK (Oak Ridge tokaMAK)Shut down1971–1976 Oak RidgeOak Ridge National Laboratory0.8 m/0.23 m2.5 T0.34 MAFirst to achieve 20 MK plasma temperature
Doublet IIShut down1972–1974 San DiegoGeneral Atomics0.63 m/0.08 m0.95 T0.21 MA
ATC (Adiabatic Toroidal Compressor)Shut down1971–19721972–1976 PrincetonPrinceton Plasma Physics Laboratory0.88 m/0.11 m2 T0.05 MADemonstrate compressional plasma heating
T-9 (Tokamak-9)Shut down ?1972–1977 MoscowKurchatov Institute0.36 m/0.07 m1 T
TO-1Shut down ?1972–1978 MoscowKurchatov Institute0.6 m/0.13 m1.5 T0.07 MA
Alcator A (Alto Campo Toro)Shut down ?1972–1978 CambridgeMassachusetts Institute of Technology0.54 m/0.10 m9.0 T0.3 MA
JFT-2 (JAERI Fusion Torus 2)Shut down ?1972–1982 NakaJapan Atomic Energy Research Institute0.9 m/0.25 m1.8 T0.25 MA
Turbulent Tokamak Frascati (TTF, torello)Shut down1973 FrascatiENEA0.3 m/0.04 m1 T0.005 MAStudy of turbulent plasma heating
Pulsator[3]Shut down1970–19731973–1979 GarchingMax Planck Institute for Plasma Physics0.7 m/0.12 m2.7 T0.125 MADiscovery of high-density operation with tokamaks
TFR (Tokamak de Fontenay-aux-Roses)Shut down1973–1984 Fontenay-aux-RosesCEA0.98 m/0.2 m6 T0.49 MA
T-4 (Tokamak-4)[2]Shut down ?1974–1978 MoscowKurchatov Institute0.9 m/0.16 m5 T0.3 MAObserved fast thermal quench before major plasma disruptions
Doublet IIAShut down1974–1979 San DiegoGeneral Atomics0.66 m/0.15 m0.76 T0.35 MA
Petula-BShut down ?1974–1986 GrenobleCEA0.72 m/0.18 m2.7 T0.23 MA
T-10 (Tokamak-10)[2]Operational1975– MoscowKurchatov Institute1.50 m/0.37 m4 T0.8 MALargest tokamak of its time
T-11 (Tokamak-11)Shut down ?1975–1984 MoscowKurchatov Institute0.7 m/0.25 m1 T
PLT (Princeton Large Torus)Shut down1972–19751975–1986 PrincetonPrinceton Plasma Physics Laboratory1.32 m/0.42 m4 T0.7 MAFirst to achieve 1 MA plasma current
Divertor Injection Tokamak Experiment (DITE)Shut down1975–1989 CulhamUnited Kingdom Atomic Energy Authority1.17 m/0.27 m2.7 T0.26 MA
JIPP T-IIShut down ?1976 NagoyaNagoya University0.91 m/0.17 m3 T0.16 MA
TNT-AShut down ?1976 TokyoTokyo University0.4 m/0.09 m0.42 T0.02 MA
T-8 (Tokamak-8)[2]Shut down ?1976–? MoscowKurchatov Institute0.28 m/0.048 m0.9 T0.024 MAFirst D-shaped tokamak
Microtor[4]Shut down ?1976–1983? Los AngelesUCLA0.3 m/0.1 m2.5 T0.12 MAPlasma impurity control and diagnostic development
Macrotor[4]Shut down ?1970s–80s Los AngelesUCLA0.9 m/0.4 m0.4 T0.1 MAUnderstanding plasma rotation driven by radial current
TUMAN-3[2]Operational ?1977–
(1990–, 3M)
Saint PetersburgIoffe Institute0.55 m/0.23 m3 T0.18 MAStudy adiabatic compression, RF and NB heating, H-mode and parametric instability
Thor[5]Shut down ? MilanoUniversity of Milano0.52 m/0.195 m1 T0.055 MA
FT (Frascati Tokamak)Shut down1978 FrascatiENEA0.83 m/0.20 m10 T0.8 MA
PDX (Poloidal Divertor Experiment)Shut down ?1978–1983 PrincetonPrinceton Plasma Physics Laboratory1.4 m/0.4 m2.4 T0.5 MA
ISX-BShut down ?1978–1984 Oak RidgeOak Ridge National Laboratory0.93 m/0.27 m1.8 T0.2 MASuperconducting coils, attempt high-beta operation
Doublet IIIShut down1978–1985 San DiegoGeneral Atomics1.45 m/0.45 m2.6 T0.61 MA
T-12 (Tokamak-12)Shut down ?1978–1985 MoscowKurchatov Institute0.36 m/0.08 m1 T0.03 MA
Alcator C (Alto Campo Toro)Shut down ?1978–1986 CambridgeMassachusetts Institute of Technology0.64 m/0.16 m13 T0.8 MA
T-7 (Tokamak-7)[2]Recycled →HT-7[6] ?1979–1985 MoscowKurchatov Institute1.2 m/0.31 m3 T0.3 MAFirst tokamak with superconducting toroidal field coils
ASDEX (Axially Symmetric Divertor Experiment)[7]Recycled →HL-2A1973–19801980–1990 GarchingMax-Planck-Institut für Plasmaphysik1.65 m/0.4 m2.8 T0.5 MADiscovery of the H-mode in 1982
FT-2[2]Operational ?1980– Saint PetersburgIoffe Institute0.55 m/0.08 m3 T0.05 MAH-mode physics, LH heating
TEXTOR (Tokamak Experiment for Technology Oriented Research)[8][9]Shut down1976–19801981–2013 JülichForschungszentrum Jülich1.75 m/0.47 m2.8 T0.8 MAStudy plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor)[10]Shut down1980–19821982–1997 PrincetonPrinceton Plasma Physics Laboratory2.4 m/0.8 m5.9 T3 MAAttempted scientific break-even, reached record fusion power of 10.7 MW and temperature of 510 MK
JFT-2M (JAERI Fusion Torus 2M)Shut down ?1983–2004 NakaJapan Atomic Energy Research Institute1.3 m/0.35 m2.2 T0.5 MA
JET (Joint European Torus)[11]Shut down1978–19831983–2023 CulhamUnited Kingdom Atomic Energy Authority2.96 m/0.96 m4 T7 MARecords for fusion output power 16.1 MW (1997), fusion energy 69 MJ (2023)
Novillo[12][13]Shut downNOVA-II1983–2004 Mexico CityInstituto Nacional de Investigaciones Nucleares0.23 m/0.06 m1 T0.01 MAStudy plasma-wall interactions
JT-60 (Japan Torus-60)[14]Recycled →JT-60SA1985–2010 NakaJapan Atomic Energy Research Institute3.4 m/1.0 m4 T3 MAHigh-beta steady-state operation, highest fusion triple product
CCT (Continuous Current Tokamak)Shut down ?1986–199? Los AngelesUCLA1.5 m/0.4 m0.2 T0.05 MAH-mode studies
DIII-D[15]Operational1986[16]1986– San DiegoGeneral Atomics1.67 m/0.67 m2.2 T3 MATokamak Optimization
STOR-M (Saskatchewan Torus-Modified)[17]Operational1987– SaskatoonPlasma Physics Laboratory (Saskatchewan)0.46 m/0.125 m1 T0.06 MAStudy plasma heating and anomalous transport
T-15[2]Recycled →T-15MD1983–19881988–1995 MoscowKurchatov Institute2.43 m/0.78 m3.6 T1 MAFirst superconducting tokamak, pulse duration 1.5 s
Tore Supra[18]Recycled →WEST1988–2011 CadaracheDépartement de Recherches sur la Fusion Contrôlée2.25 m/0.7 m4.5 T2 MALarge superconducting tokamak with active cooling
ADITYA (tokamak)Operational1989– GandhinagarInstitute for Plasma Research0.75 m/0.25 m1.2 T0.25 MA
COMPASS (COMPact ASSembly)[19][20]Operational1980–1989– PragueInstitute of Plasma Physics AS CR0.56 m/0.23 m2.1 T0.32 MAPlasma physics studies for ITER
FTU (Frascati Tokamak Upgrade)Operational1990– FrascatiENEA0.935 m/0.35 m8 T1.6 MA
START (Small Tight Aspect Ratio Tokamak)[21]Recycled →Proto-Sphera1990–1998 CulhamUnited Kingdom Atomic Energy Authority0.3 m/?0.5 T0.31 MAFirst full-sized Spherical Tokamak
ASDEX Upgrade (Axially Symmetric Divertor Experiment)Operational1991– GarchingMax-Planck-Institut für Plasmaphysik1.65 m/0.5 m2.6 T1.4 MA
Alcator C-Mod (Alto Campo Toro)[22]Shut down1986–1991–2016 CambridgeMassachusetts Institute of Technology0.68 m/0.22 m8 T2 MARecord plasma pressure 2.05 bar
ISTTOK (Instituto Superior Técnico TOKamak)[23]Operational1992– LisbonInstituto de Plasmas e Fusão Nuclear0.46 m/0.085 m2.8 T0.01 MA
TCV (Tokamak à Configuration Variable)[24]Operational1992– LausanneÉcole Polytechnique Fédérale de Lausanne0.88 m/0.25 m1.43 T1.2 MAConfinement studies
HBT-EP (High Beta Tokamak-Extended Pulse)Operational1993– New York CityColumbia University Plasma Physics Laboratory0.92 m/0.15 m0.35 T0.03 MAHigh-Beta tokamak
HT-7 (Hefei Tokamak-7)Shut down1991–1994 (T-7)1995–2013 HefeiHefei Institutes of Physical Science1.22 m/0.27 m2 T0.2 MAChina's first superconducting tokamak
Pegasus Toroidal Experiment[25]Operational ?1996– MadisonUniversity of Wisconsin–Madison0.45 m/0.4 m0.18 T0.3 MAExtremely low aspect ratio
NSTX (National Spherical Torus Experiment)[26]Operational1999– Plainsboro TownshipPrinceton Plasma Physics Laboratory0.85 m/0.68 m0.3 T2 MAStudy the spherical tokamak concept
Globus-M (UNU Globus-M)[27]Operational1999– Saint PetersburgIoffe Institute0.36 m/0.24 m0.4 T0.3 MAStudy the spherical tokamak concept
ET (Electric Tokamak)Recycled →ETPD19981999–2006 Los AngelesUCLA5 m/1 m0.25 T0.045 MALargest tokamak of its time
TCABR (Tokamak Chauffage Alfvén Brésilien)Operational 1980–1999 1999– Lausanne,
Sao Paulo
University of Sao Paulo 0.615 m / 0.18 m 1.1 T 0.10 MA Most important tokamak in the southern hemisphere
CDX-U (Current Drive Experiment-Upgrade)Recycled →LTX2000–2005 PrincetonPrinceton Plasma Physics Laboratory0.3 m/?0.23 T0.03 MAStudy Lithium in plasma walls
MAST (Mega-Ampere Spherical Tokamak)[28]Recycled →MAST-Upgrade1997–19992000–2013 CulhamUnited Kingdom Atomic Energy Authority0.85 m/0.65 m0.55 T1.35 MAInvestigate spherical tokamak for fusion
HL-2A (Huan-Liuqi-2A)Operational2000–20022002–2018 ChengduSouthwestern Institute of Physics1.65 m/0.4 m2.7 T0.43 MAH-mode physics, ELM mitigation
SST-1 (Steady State Superconducting Tokamak)[29]Operational2001–2005– GandhinagarInstitute for Plasma Research1.1 m/0.2 m3 T0.22 MAProduce a 1000 s elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak)[30]Operational2000–20052006– HefeiHefei Institutes of Physical Science1.85 m/0.43 m3.5 T0.5 MASuperheated plasma for over 101 s at 120 M°C and 20 s at 160 M°C[31]
J-TEXT (Joint TEXT)OperationalTEXT (Texas EXperimental Tokamak)2007– WuhanHuazhong University of Science and Technology1.05 m/0.26 m2.0 T0.2 MADevelop plasma control
KSTAR (Korea Superconducting Tokamak Advanced Research)[32]Operational1998–20072008– DaejeonNational Fusion Research Institute1.8 m/0.5 m3.5 T2 MATokamak with fully superconducting magnets, 48 s-long operation at 100 MK[33]
LTX (Lithium Tokamak Experiment)Operational2005–20082008– PrincetonPrinceton Plasma Physics Laboratory0.4 m/?0.4 T0.4 MAStudy Lithium in plasma walls
QUEST (Q-shu University Experiment with Steady-State Spherical Tokamak)[34]Operational2008– KasugaKyushu University0.68 m/0.4 m0.25 T0.02 MAStudy steady state operation of a Spherical Tokamak
Kazakhstan Tokamak for Material testing (KTM)Operational2000–20102010– KurchatovNational Nuclear Center of the Republic of Kazakhstan0.86 m/0.43 m1 T0.75 MATesting of wall and divertor
ST25-HTS[35]Operational2012–20152015– CulhamTokamak Energy Ltd0.25 m/0.125 m0.1 T0.02 MASteady state plasma
WEST (Tungsten Environment in Steady-state Tokamak)Operational2013–20162016– CadaracheDépartement de Recherches sur la Fusion Contrôlée2.5 m/0.5 m3.7 T1 MASuperconducting tokamak with active cooling
ST40[36]Operational2017–20182018– DidcotTokamak Energy Ltd0.4 m/0.3 m3 T2 MAFirst high field spherical tokamak
MAST-U (Mega-Ampere Spherical Tokamak Upgrade)[37]Operational2013–20192020– CulhamUnited Kingdom Atomic Energy Authority0.85 m/0.65 m0.92 T2 MATest new exhaust concepts for a spherical tokamak
HL-2M (Huan-Liuqi-2M)[38]Operational2018–20192020– LeshanSouthwestern Institute of Physics1.78 m/0.65 m2.2 T1.2 MAElongated plasma with 200 MK
JT-60SA (Japan Torus-60 super, advanced)[39]Operational2013–20202021– NakaJapan Atomic Energy Research Institute2.96 m/1.18 m2.25 T5.5 MAOptimise plasma configurations for ITER and DEMO with full non-inductive steady-state operation
T-15MDOperational2010–20202021– MoscowKurchatov Institute1.48 m/0.67 m2 T2 MAHybrid fusion/fission reactor
HongHuang 70[40] Operational2022–20242024ShanghaiEnergy Singularity0.75 m/?2.5 TREBCO High-temperature superconducting coils
ITER[41]Under construction2013–2025?2025? CadaracheITER Council6.2 m/2.0 m5.3 T15 MA ?Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion power
SPARC[42][43][44][45][46]Under construction2021–2025 Devens, MACommonwealth Fusion Systems and MIT Plasma Science and Fusion Center1.85 m/0.57 m12.2 T8.7 MACompact, high-field tokamak with ReBCO coils and 100 MW planned fusion power
DTT (Divertor Tokamak Test facility)[47][48]Planned2022–2027?2027? FrascatiENEA2.14 m/0.70 m6 T ?5.5 MA ?Superconducting tokamak to study power exhaust
SST-2 (Steady State Tokamak-2)[49]Planned2027? GujaratInstitute for Plasma Research4.42 m/1.47 m5.42 T11.2 MAFull-fledged fusion reactor with tritium breeding and up to 500 MW output
CFETR (China Fusion Engineering Test Reactor)[50]Planned≥20232030?Institute of Plasma Physics, Chinese Academy of Sciences7.2 m/2.2 m ?6.5 T ?14 MA ?Bridge gaps between ITER and DEMO, planned fusion power 1000 MW
ST-F1 (Spherical Tokamak - Fusion 1)[51]Planned2027? DidcotTokamak Energy Ltd1.4 m/0.8 m ?4 T5 MASpherical tokamak with Q=3 and hundreds of MW planned electrical output
STEP (Spherical Tokamak for Energy Production)Planned2032-20402040 D-D
Mid 2040s DT Campaign
West Burton, NottinghamshireUnited Kingdom Atomic Energy Authority3 m/2 m ? ?16.5 MA ?Spherical tokamak with 100MW planned electrical output[52]
IGNITOR[53]Planned[54] ? ? TroitzkENEA1.32 m/0.47 m13 T11 MA ?Compact fusion reactor with self-sustained plasma and 100 MW of planned fusion power
JA-DEMO Planned 2030? 2050? ? 8.5 m/2.4 m[55] 5.94 T 12.3 MA Prototype for development of Commercial Fusion Reactors 1.5-2GW Fusion output.[56]
K-DEMO (Korean fusion demonstration tokamak reactor)[57]Planned2037?National Fusion Research Institute6.8 m/2.1 m7 T12 MA ?Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power
DEMO (DEMOnstration Power Station)Planned2040?2050? ?9 m/3 m ?6 T ?20 MA ?Prototype for a commercial fusion reactor

Stellarator

Device nameStatusConstructionOperationTypeLocationOrganisationMajor/minor radiusB-fieldPurposeImage
Model AShut down1952–19531953–?Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m0.1 TFirst stellarator, table-top device
Model BShut down1953–19541954–1959Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m5 TDevelopment of plasma diagnostics
Model B-1Shut down ?–1959Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.25 m/0.02 m5 TYielded 1 MK plasma temperatures, showed cooling by X-ray radiation from impurities
Model B-2Shut down1957Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m5 TElectron temperatures up to 10 MK
Model B-3Shut down19571958–Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.4 m/0.02 m4 TLast figure-8 device, confinement studies of ohmically heated plasma
Model B-64Shut down19551955Square PrincetonPrinceton Plasma Physics Laboratory ? m/0.05 m1.8 T
Model B-65Shut down19571957Racetrack PrincetonPrinceton Plasma Physics Laboratory
Model B-66Shut down19581958–?Racetrack PrincetonPrinceton Plasma Physics Laboratory
Wendelstein 1-AShut down1960Racetrack GarchingMax-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=3 showed that stellarators can overcome Bohm diffusion, "Munich mystery"
Wendelstein 1-BShut down1960Racetrack GarchingMax-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=2
Model CRecycled →ST1957–19611961–1969Racetrack PrincetonPrinceton Plasma Physics Laboratory1.9 m/0.07 m3.5 TSuffered from large plasma losses by Bohm diffusion through "pump-out"
L-1Shut down19631963–1971round MoscowLebedev Physical Institute0.6 m/0.05 m1 TFirst Soviet stellarator, overcame Bohm diffusion
SIRIUSShut down1964–?Racetrack KharkivKharkiv Institute of Physics and Technology (KIPT)
TOR-1Shut down19671967–1973 MoscowLebedev Physical Institute0.6 m/0.05 m1 T
TOR-2Shut down ?1967–1973 MoscowLebedev Physical Institute0.63 m/0.036 m2.5 T
Uragan-1Shut down1960–19671967–?Racetrack KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.1 m/0.1 m1 TOvercame Bohm-diffusion by a factor of 30
CLASP (Closed Line And Single Particle)[58]Shut down ?1967–? CulhamUnited Kingdom Atomic Energy Authority0.3 m/0.056 m0.1 TStudy confinement of electrons in a high-shear stellarator
TWIST[58]Shut down ?1967–? CulhamUnited Kingdom Atomic Energy Authority0.32 m/0.045 m0.3 TStudy turbulent heating
Proto-CLEO[58]Shut down ?1968–?single-turn helical winding inside toroidal field conductors Culham,
Madison
United Kingdom Atomic Energy Authority0.4 m/0.05 m0.5 Tconfirmed plasma confinement times of neoclassical theory
TORSO[58]Shut down ?1972–?Ultimate torsatron CulhamUnited Kingdom Atomic Energy Authority0.4 m/0.05 m2 T
CLEO[58]Shut down ?1974–? CulhamUnited Kingdom Atomic Energy Authority0.9 m/0.125 m2 TStudy of particle transport and beta limits, reached similar performance as tokamaks
Wendelstein 2-AShut down1965–19681968–1974Heliotron GarchingMax-Planck-Institut für Plasmaphysik0.5 m/0.05 m0.6 TGood plasma confinement
Saturn[59]Shut down19701970–?Torsatron KharkivKharkiv Institute of Physics and Technology0.36 m/0.08 m1 Tfirst Torsatron, ℓ=3, m=8 field periods, base for several torsatrons at KIPT
Wendelstein 2-BShut down ?–19701971–?Heliotron GarchingMax-Planck-Institut für Plasmaphysik0.5 m/0.055 m1.25 TDemonstrated similar performance as tokamaks
Vint-20[60]Shut down19721973–?Torsatron KharkivKharkiv Institute of Physics and Technology0.315 m/0.0725 m1.8 Tsingle-pole ℓ=1, m=13 field periods
L-2Shut down ?1975–? MoscowLebedev Physical Institute1 m/0.11 m2.0 T
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung)Recycled →HIDRA1972–19751975–2013Classical stellarator GreifswaldMax-Planck-Institut für Plasmaphysik0.72 m/0.15 m1.4 TTest lower hybrid heating
Wendelstein 7-AShut down ?1975–1985Classical stellarator GarchingMax-Planck-Institut für Plasmaphysik2 m/0.1 m3.5 TFirst "pure" stellarator without plasma current, solved stellarator heating problem
Heliotron-EShut down ?1980–?Heliotron2.2 m/0.2 m1.9 T
Heliotron-DRShut down ?1981–?Heliotron0.9 m/0.07 m0.6 T
Uragan-3 (M)[61]Operational ?1982–?[62]
M: 1990–
Torsatron KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.0 m/0.12 m1.3 T ?
Auburn Torsatron (AT)Shut down ?1984–1990Torsatron AuburnAuburn University0.58 m/0.14 m0.2 T
Wendelstein 7-ASShut down1982–19881988–2002Modular, advanced stellarator GarchingMax-Planck-Institut für Plasmaphysik2 m/0.13 m2.6 TFirst computer-optimized stellarator, first H-mode in a stellarator in 1992
Advanced Toroidal Facility (ATF)Shut down1984–1988[63]1988–1994Torsatron Oak RidgeOak Ridge National Laboratory2.1 m/0.27 m2.0 TFirst large American stellarator after Tokamak stampede, high-beta operation, >1h plasma operation
Compact Helical System (CHS)Shut down ?1989–?Heliotron TokiNational Institute for Fusion Science1 m/0.2 m1.5 T
Compact Auburn Torsatron (CAT)Shut down ?–19901990–2000Torsatron AuburnAuburn University0.53 m/0.11 m0.1 TStudy magnetic flux surfaces
H-1 (Heliac-1)[64]Operational1992–Heliac Canberra,
Research School of Physical Sciences and Engineering, Australian National University1.0 m/0.19 m0.5 Tshipped to China in 2017
TJ-K (Tokamak de la Junta Kiel)[65]OperationalTJ-IU (1999)1994–Torsatron Kiel, StuttgartUniversity of Stuttgart0.60 m/0.10 m0.5 TOne helical and two vertical coil sets; Teaching; moved from Kiel to Stuttgart in 2005
TJ-II (Tokamak de la Junta II)[66]Operational1991–19961997–flexible Heliac MadridNational Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas1.5 m/0.28 m1.2 TStudy plasma in flexible configuration
LHD (Large Helical Device)[67]Operational1990–19981998–Heliotron TokiNational Institute for Fusion Science3.5 m/0.6 m3 TDemonstrated long-term operation of large superconducting coils
HSX (Helically Symmetric Experiment)[68]Operational1999–Modular, quasi-helically symmetric MadisonUniversity of Wisconsin–Madison1.2 m/0.15 m1 TInvestigate plasma transport in quasi-helically-symmetric field, similar to tokamaks
Heliotron J[69]Operational2000–Heliotron KyotoInstitute of Advanced Energy1.2 m/0.1 m1.5 TStudy helical-axis heliotron configuration
Columbia Non-neutral Torus (CNT)Operational ?2004–Circular interlocked coils New York CityColumbia University0.3 m/0.1 m0.2 TStudy of non-neutral (mostly electron) plasmas
Uragan-2(M)[61]Operational1988–20062006–[70]Heliotron, Torsatron KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.7 m/0.22 m2.4 Tℓ=2 Torsatron
Quasi-poloidal stellarator (QPS)[71][72]Cancelled2001–2007Modular Oak RidgeOak Ridge National Laboratory0.9 m/0.33 m1.0 TStellarator research
NCSX (National Compact Stellarator Experiment)Cancelled2004–2008Helias PrincetonPrinceton Plasma Physics Laboratory1.4 m/0.32 m1.7 THigh-β stability
Compact Toroidal Hybrid (CTH)Operational ?2007?–Torsatron AuburnAuburn University0.75 m/0.2 m0.7 THybrid stellarator/tokamak
HIDRA (Hybrid Illinois Device for Research and Applications)[73]Operational2013–2014 (WEGA)2014– ? Urbana, ILUniversity of Illinois0.72 m/0.19 m0.5 TStellarator and tokamak in one device, capable of long pulse steady-state operation; study plasma-wall interactions
UST_2[74]Operational20132014–modular three period quasi-isodynamic MadridCharles III University of Madrid0.29 m/0.04 m0.089 T3D-printed stellarator
Wendelstein 7-X[75]Operational1996–20222015–Helias GreifswaldMax-Planck-Institut für Plasmaphysik5.5 m/0.53 m3 TSteady-state plasma in large fully optimized stellarator
SCR-1 (Stellarator of Costa Rica)Operational2011–20152016–Modular CartagoCosta Rica Institute of Technology0.14 m/0.042 m0.044 T
MUSE[76] Operational 2022–2023 2023– Quasiaxi-symmetrical Princeton Princeton Plasma Physics Laboratory 0.3 m/0.075 m 0.15 T First stellarator with permanent magnets
CFQS (Chinese First Quasi-Axisymmetric Stellarator)[77] Under construction 2017– Helias Chengdu Southwest Jiaotong University, National Institute for Fusion Science in Japan 1 m/0.25 m 1 T m=2 quasi-axisymmetric stellarator, modular
EFPP (European Fusion Power Plant)[78] Planned 2030 ? 2045 ? Helias Gauss Fusion 7–9 T ? Fusion power plant with 2–3 GW output

Magnetic mirror

Toroidal Z-pinch

  • Perhapsatron (1953, USA)
  • ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)

Reversed field pinch (RFP)

Spheromak

Field-reversed configuration (FRC)

Other toroidal machines

  • TMP (Tor s Magnitnym Polem, torus with magnetic field): A porcelain torus with major radius 80 cm, minor radius 13 cm, toroidal field of 1.5 T and plasma current 0.25 MA, predecessor to the first tokamak (1955, USSR)

Plasma pinch

Levitated dipole

Inertial confinement

Laser-driven

Device nameStatusConstructionOperationDescriptionPeak laser powerPulse energyFusion yieldLocationOrganisationImage
4 pi laserShut down196?Semiconductor laser5 GW12 J LivermoreLLNL
Long path laserShut down19721972First ICF laser with neodymium doped glass (Nd:glass) as lasing medium5 GW50 J LivermoreLLNL
Single Beam System (SBS) "67"Shut down1971-19731973Single-beam CO2 laser[84]200 GW1 kJ Los AlamosLANL
Double Bounce Illumination System (DBIS)Shut down1972-19741974-1990First private laser fusion effort, YAG laser, neutron yield 104 to 3×105 neutrons1 kJ100 nJ Ann Arbor, MichiganKMS Fusion
MERLIN (Medium Energy Rod Laser Incorporating Neodymium), N78 laserShut down1972-19751975-?Nd:glass laser100 GW40 J RAF AldermastonAWE
Cyclops laserShut down19751975Single-beam Nd:glass laser, prototype for Shiva[85]1 TW270 J LivermoreLLNL
Janus laserShut down1974-19751975Two-beam Nd:glass laser demonstrated laser compression and thermonuclear burn of deuterium–tritium1 TW10 J LivermoreLLNL
Gemini laser, Dual-Beam Module (DBM)Shut down≤ 19751976Two-beam CO2 laser, tests for Helios5 TW2.5 kJ Los AlamosLANL
Argus laserShut down19761976-1981Two-beam Nd:glass laser, advanced the study of laser-target interaction and paved the way for Shiva4 TW2 kJ3 mJ LivermoreLLNL
Vulcan laser (Versicolor Ultima Lux Coherens pro Academica Nostra)[86]Operational1976-19771977-8-beam Nd:glass laser, highest-intensity focussed laser in the world in 2005[87]1 PW2.6 kJ DidcotRAL
Shiva laserShut down19771977-198120-beam Nd:glass laser; proof-of-concept for Nova; fusion yield of 1011 neutrons; found that its infrared wavelength of 1062 nm was too long to achieve ignition30 TW10.2 kJ0.1 J LivermoreLLNL
Helios laser, Eight-Beam System (EBS)Shut down1975-197819788-beam CO2 laser; Media at Wikimedia Commons20 TW10 kJ Los AlamosLANL
HELEN (High Energy Laser Embodying Neodymium)Shut down1976-19791979-2009Two-beam Nd:glass laser1 TW200 J DidcotRAL
ISKRA-4Operational-19791979-8-beam iodine gas laser, prototype for ISKRA-5[88]10 TW2 kJ6 mJ SarovRFNC-VNIIEF
Sprite laser[86]Shut down1981-19831983-1995First high-power Krypton fluoride laser used for target irradiation, λ=249 nm1 TW7.5 J DidcotRAL
Gekko XIIOperational1983-12-beam, Nd:glass laser500 TW10 kJ OsakaInstitute for Laser Engineering
Novette laserShut down1981-19831983-1984Nd:glass laser to validate the Nova design, first X-ray laser[89]13 TW18 kJLivermoreLLNL
Antares laser, High Energy Gas Laser Facility (HEGLF)Shut down1983[90]24-beam largest CO2 laser ever built. Missed goal of scientific fusion breakeven, because production of hot electrons in target plasma due to long 10.6 μm wavelength of laser resulted in poor laser/plasma energy coupling[89]200 TW40 kJ Los AlamosLANL
PHAROS laserOperational198?Two-beam Nd:glass laser300 GW1 kJ Washington D.C.NRL
Nova laserShut down1984-199910-beam NIR and frequency-tripled 351 nm UV laser; fusion yield of 1013 neutrons; attempted ignition, but failed due to fluid instability of targets; led to construction of NIF1.3 PW120 kJ30 JLivermoreLLNL
ISKRA-5Operational-198912-beam iodine gas laser, fusion yield 1010 to 1011 neutrons[88]100 TW30 kJ0.3 J SarovRFNC-VNIIEF
Aurora laserShut down≤ 1988-1989199096-beam Krypton fluoride laser300 GW1.3 kJ Los AlamosLANL
PALS, formerly "Asterix IV"Operational-19911991-Iodine gas laser, λ=1315 nm3 TW1 kJ Garching,
Prague
MPQ, CAS
Trident laserOperational198?-19921992-20173-beam Nd:glass laser; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns200 TW500 J Los AlamosLANL
Nike laserOperational≤ 1991-19941994-56-beam, most-capable Krypton fluoride laser for laser target interactions[91][92]2.6 TW3 kJ Washington, D.C.NRL
OMEGA laserOperational ?-19951995-60-beam UV frequency-tripled Nd:glass laser, fusion yield 1014 neutrons60 TW40 kJ300 J RochesterLLE
ElectraOperationalKrypton fluoride laser, 5 Hz operation with 90,000+ shots continuous4 GW730 J Washington D.C.NRL
LULI2000Operational ?2003-6-beam Nd:glass laser, λ=1.06 μm, λ=0.53 μm, λ=0.26 μm500 GW600 J PalaiseauÉcole polytechnique
OMEGA EPOperational2008-60-beam UV1.4 PW5 kJ RochesterLLE
National Ignition Facility (NIF)Operational1997-20092010-192-beam Nd:glass laser, achieved scientific breakeven with fusion gain of 1.5 and 1.2×1018 neutrons[93]500 TW2.05 MJ3.15 MJ LivermoreLLNL
OrionOperational2006-20102010-10-beams, λ=351 nm200 TW5 kJ RAF AldermastonAWE
Laser Mégajoule (LMJ)Operational1999-20142014-Second-largest laser fusion facility, 10 out of 22 beam lines operational in 2022[94]800 TW1 MJ BordeauxCEA
Laser for Fast Ignition Experiments (LFEX)Operational2003-20152015-High-contrast heating laser for FIREX, λ=1053 nm2 PW10 kJ100 μJ OsakaInstitute for Laser Engineering
HiPER (High Power Laser Energy Research Facility)Cancelled2007-2015-Pan-European project to demonstrate the technical and economic viability of laser fusion for the production of energy[95](4 PW)(270 kJ)(25 MJ)
Laser Inertial Fusion Energy (LIFE)Cancelled2008-2013-Effort to develop a fusion power plant succeeding NIF(2.2 MJ)(40 MJ) LivermoreLLNL
ISKRA-6Planned ? ?128 beam Nd:glass laser300 TW?300 kJ? SarovRFNC-VNIIEF

Z-pinch

Inertial electrostatic confinement

Magnetized target fusion

References

  1. "International tokamak research". ITER.
  2. Smirnov, V.P. (30 December 2009). "Tokamak foundation in USSR/Russia 1950–1990". Nuclear Fusion. 50 (1): 014003. doi:10.1088/0029-5515/50/1/014003. eISSN 1741-4326. ISSN 0029-5515. S2CID 17487157.
  3. "Pulsator".
  4. Taylor, R. J.; Lee, P.; Luhmann, N. C. Jr (1981). ICRF heating, particle transport and fluctuations in tokamaks (PDF) (Report). Archived from the original (PDF) on 2022-02-25.
  5. Argenti, D.; Bonizzoni, G.; Cirant, S.; Corti, S.; Grosso, G.; Lampis, G.; Rossi, L.; Carretta, U.; Jacchia, A.; De Luca, F.; Fontanesi, M. (June 1981). "The Thor tokamak experiment". Il Nuovo Cimento B. 63 (2): 471–486. Bibcode:1981NCimB..63..471A. doi:10.1007/BF02755093. eISSN 1826-9877. S2CID 123205206.
  6. Robert Arnoux (2009-05-18). "From Russia with love".
  7. "ASDEX". www.ipp.mpg.de.
  8. "Forschungszentrum Jülich – Plasmaphysik (IEK-4)". fz-juelich.de (in German).
  9. Progress in Fusion Research – 30 Years of TEXTOR
  10. "Tokamak Fusion Test Reactor". 2011-04-26. Archived from the original on 2011-04-26.
  11. "EFDA-JET, the world's largest nuclear fusion research experiment". 2006-04-30. Archived from the original on 2006-04-30.
  12. ":::. Instituto Nacional de Investigaciones Nucleares | Fusión nuclear ". 2009-11-25. Archived from the original on 2009-11-25.
  13. "All-the-Worlds-Tokamaks". tokamak.info.
  14. Yoshikawa, M. (2006-10-02). "JT-60 Project". Fusion Technology 1978. 2: 1079. Bibcode:1979fute.conf.1079Y. Archived from the original on 2006-10-02.
  15. "diii-d:home [MFE: DIII-D and Theory]". fusion.gat.com. Retrieved 2018-09-04.
  16. "DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)". science.energy.gov. Retrieved 2018-09-04.
  17. "U of S". 2011-07-06. Archived from the original on 2011-07-06.
  18. "Tore Supra". www-fusion-magnetique.cea.fr. Retrieved 2018-09-04.
  19. "Tokamak Department, Institute of Plasma Physics". 2014-05-12. Archived from the original on 2014-05-12.
  20. "COMPASS – General information". 2013-10-25. Archived from the original on 2013-10-25.
  21. . 2006-04-24 https://web.archive.org/web/20060424061102/http://www.fusion.org.uk/culham/start.htm. Archived from the original on 2006-04-24. {{cite web}}: Missing or empty |title= (help)
  22. "MIT Plasma Science & Fusion Center: research>alcator>". 2015-07-09. Archived from the original on 2015-07-09.
  23. "Centro de Fusão Nuclear". cfn.ist.utl.pt. Archived from the original on 2010-03-07. Retrieved 2012-02-13.
  24. "EPFL". crppwww.epfl.ch.
  25. "Pegasus Toroidal Experiment". pegasus.ep.wisc.edu.
  26. "NSTX-U". nstx-u.pppl.gov. Retrieved 2018-09-04.
  27. "Globus-M experiment". globus.rinno.ru/ (in Russian). Retrieved 2021-10-23.
  28. "MAST – the Spherical Tokamak at UKAEA Culham". 2006-04-21. Archived from the original on 2006-04-21.
  29. "The SST-1 Tokamak Page". 2014-06-20. Archived from the original on 2014-06-20.
  30. "EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences". english.hf.cas.cn.
  31. "Chinese "Artificial Sun" experimental fusion reactor sets world record for superheated plasma time". The Nation. May 29, 2021.
  32. . 2008-05-30 https://web.archive.org/web/20080530221257/http://www.nfri.re.kr/. Archived from the original on 2008-05-30. {{cite web}}: Missing or empty |title= (help)
  33. McFadden, Christopher (29 March 2024). "South Korean 'artificial sun' reaches 7 times the Sun's core temperature". Interesting Engineering. Retrieved 30 March 2024.
  34. . 2013-11-10 https://web.archive.org/web/20131110043518/http://www.triam.kyushu-u.ac.jp/QUEST_HP/quest_e.html. Archived from the original on 2013-11-10. {{cite web}}: Missing or empty |title= (help)
  35. "ST25 » Tokamak Energy". Archived from the original on 2019-03-26. Retrieved 2018-10-21.
  36. "ST40 » Tokamak Energy". Archived from the original on 2019-03-26. Retrieved 2018-10-21.
  37. "Status and Plans on MAST-U". 2016-12-13.
  38. "China completes new tokamak". 29 November 2019.
  39. "The JT-60SA project". www.jt60sa.org.
  40. "Fusion technology breakthrough: China unveils first commercial "artificial sun" (photo)". NEWS.am TECH - Innovations and science. June 20, 2024. Retrieved 2024-06-22.
  41. "ITER – the way to new energy". ITER.
  42. Harris, Mark (October 4, 2023). "2023 Climate Tech Companies to Watch: Commonwealth and its compact tokamak". MIT Technology Review. Retrieved February 10, 2024.
  43. "SPARC at MIT Plasma Science and Fusion Center".
  44. Creely, A. J.; Greenwald, M. J.; Ballinger, S. B.; Brunner, D.; Canik, J.; Doody, J.; Fülöp, T.; Garnier, D. T.; Granetz, R.; Gray, T. K.; Holland, C. (2020). "Overview of the SPARC tokamak". Journal of Plasma Physics. 86 (5). Bibcode:2020JPlPh..86e8602C. doi:10.1017/S0022377820001257. hdl:1721.1/136131. ISSN 0022-3778.
  45. Chesto, Jon (2021-03-03). "MIT energy startup homes in on fusion, with plans for 47-acre site in Devens". BostonGlobe.com. Retrieved 2021-03-03.
  46. Verma, Pranshu. Nuclear fusion power inches closer to reality. The Washington Post, August 26, 2022.
  47. "The DTT Project". Archived from the original on 2019-03-30. Retrieved 2020-02-21.
  48. "The new Divertor Tokamak Test facility" (PDF). Archived from the original (PDF) on 2020-02-21. Retrieved 2020-02-21.
  49. Srinivasan, R. (2016). "Design and analysis of SST-2 fusion reactor". Fusion Engineering and Design. 112: 240–243. Bibcode:2016FusED.112..240S. doi:10.1016/j.fusengdes.2015.12.044. ISSN 0920-3796.
  50. Zhuang, G.; Li, G.Q.; Li, J.; Wan, Y.X.; Liu, Y.; Wang, X.L.; Song, Y.T.; Chan, V.; Yang, Q.W.; Wan, B.N.; Duan, X.R.; Fu, P.; Xiao, B.J. (5 June 2019). "Progress of the CFETR design". Nuclear Fusion. 59 (11): 112010. Bibcode:2019NucFu..59k2010Z. doi:10.1088/1741-4326/ab0e27. eISSN 1741-4326. ISSN 0029-5515. S2CID 127585754.
  51. "Energy innovator reaches for the stars".
  52. STEP, UKAEA. "STEP Project Partner Slide Deck". STEP UKAEA Portal. Retrieved 2023-04-04.
  53. "Ignited plasma in Tokamaks – The IGNITOR project". frascati.enea.it. Archived from the original on 2020-04-19.
  54. "CREMLIN WP2 Informal exchange meeting: The Russian-Italian IGNITOR Tokamak Project: Design and status of implementation". DESY-Konferenzverwaltung (Indico). 13 July 2017.
  55. Tobita, Kenji; Hiwatari, Ryoji; Sakamoto, Yoshiteru; Someya, Youji; Asakura, Nobuyuki; Utoh, Hiroyasu; Miyoshi, Yuya; Tokunaga, Shinsuke; Homma, Yuki; Kakudate, Satoshi; Nakajima, Noriyoshi; for Fusion DEMO, the Joint Special Design Team (2019-07-04). "Japan's Efforts to Develop the Concept of JA DEMO During the Past Decade". Fusion Science and Technology. 75 (5): 372–383. Bibcode:2019FuST...75..372T. doi:10.1080/15361055.2019.1600931. ISSN 1536-1055. S2CID 164357381.
  56. Iwai, Yasunori; Edao, Yuki; Kurata, Rie; Isobe, Kanetsugu (2021-05-01). "Basic concept of JA DEMO fuel cycle". Fusion Engineering and Design. 166: 112261. Bibcode:2021FusED.16612261I. doi:10.1016/j.fusengdes.2021.112261. ISSN 0920-3796. S2CID 233566366.
  57. Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C. (2015). "Design concept of K-DEMO for near-term implementation". Nuclear Fusion. 55 (5): 053027. Bibcode:2015NucFu..55e3027K. doi:10.1088/0029-5515/55/5/053027. ISSN 0029-5515.
  58. Lees, D.J. (1 September 1985). "Culham stellarator programme, 1965–1980". Nuclear Fusion. 25 (9): 1259–1265. doi:10.1088/0029-5515/25/9/044. eISSN 1741-4326. ISSN 0029-5515. S2CID 119660036.
  59. Georgiyevskiy, A. V.; Solodovchenko, S. I.; Voitsenya, V. S. (13 February 2010). "Contributions of the "Saturn" to Modern Stellarator-Torsatron Research". Journal of Fusion Energy. 29 (4): 399–406. Bibcode:2010JFuE...29..399G. doi:10.1007/s10894-010-9284-0. eISSN 1572-9591. ISSN 0164-0313. S2CID 123305093.
  60. Georgievskii, A. V.; Suprunenko, V. A.; Sukhomlin, E. A. (May 1973). "Vint-20 single-helix torsatron machine with three-dimensional magnetic axis". Soviet Atomic Energy. 34 (5): 518–519. doi:10.1007/BF01163768. eISSN 1573-8205. ISSN 0038-531X. S2CID 94405830.
  61. "History | ННЦ ХФТИ". kipt.kharkov.ua.
  62. "Uragan-3M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  63. "ORNL Review v17n3 1984.pdf | ORNL". www.ornl.gov.
  64. Department, Head of; prl@physics.anu.edu.au. "Plasma Research Laboratory – PRL – ANU". prl.anu.edu.au. Archived from the original on 2010-02-13. Retrieved 2005-12-26.
  65. "TJ-K – FusionWiki". fusionwiki.ciemat.es.
  66. CIEMAT. "Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas". ciemat.es (in Spanish).
  67. "Large Helical Device Project". lhd.nifs.ac.jp. Archived from the original on 2010-04-12. Retrieved 2006-04-20.
  68. "HSX – Helically Symmetric eXperiment". hsx.wisc.edu.
  69. "Heliotron J Project". iae.kyoto-u.ac.jp/en/joint/heliotron-j.html.
  70. "Uragan-2M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  71. "QPS Home Page". Archived from the original on 2016-04-24. Retrieved 2018-09-01.
  72. http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf
  73. "HIDRA – Hybrid Illinois Device for Research and Applications | CPMI – Illinois". cpmi.illinois.edu.
  74. "Vying Fusion Energy - V. Queral". www.fusionvic.org.
  75. "Wendelstein 7-X". ipp.mpg.de/w7x.
  76. T.M. Qian, X. Chu, C. Pagano, D. Patch, M.C. Zarnstorff, B. Berlinger, D. Bishop, A. Chambliss, M. Haque, D. Seidita, C. Zhu (2023-10-31). "Design and construction of the MUSE permanent magnet stellarator". Journal of Plasma Physics. 89 (5): 955890502. Bibcode:2023JPlPh..89e9502Q. doi:10.1017/S0022377823000880.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  77. KINOSHITA, Shigeyoshi; SHIMIZU, Akihiro; OKAMURA, Shoichi; ISOBE, Mitsutaka; XIONG, Guozhen; LIU, Haifeng; XU, Yuhong; The CQFS Team (2019-06-03). "Engineering Design of the Chinese First Quasi-Axisymmetric Stellarator (CFQS)". Plasma and Fusion Research. 14: 3405097. Bibcode:2019PFR....1405097K. doi:10.1585/pfr.14.3405097. ISSN 1880-6821.
  78. "Introduction to the Gauss Fusion Initiative" (PDF). 2022-12-08.
  79. "CONSORZIO RFX – Ricerca Formazione Innovazione". igi.cnr.it. Archived from the original on 2009-09-01. Retrieved 2018-04-16.
  80. Hartog, Peter Den. "MST – UW Plasma Physics". plasma.physics.wisc.edu. Archived from the original on 2019-03-13. Retrieved 2013-02-28.
  81. Liu, Wandong; et, al. (2017). "Overview of Keda Torus eXperiment initial results". Nuclear Fusion. 57 (11): 116038. Bibcode:2017NucFu..57k6038L. doi:10.1088/1741-4326/aa7f21. ISSN 0029-5515. S2CID 116431906.
  82. "Report Oct 15, 2021" (PDF). 2021-10-15. Archived (PDF) from the original on 2021-10-25.
  83. "Levitated Dipole Experiment". 2004-08-23. Archived from the original on 2004-08-23.
  84. F Skoberne (July 1967). "Los Alamos Laser Fusion Program" (PDF).
  85. "Beam-propagation studies on Cyclops" (PDF). February 1976.
  86. Danson, Colin N.; et al. (2021). "A history of high-power laser research and development in the United Kingdom". High Power Laser Science and Engineering. 9. Bibcode:2021HPLSE...9E..18D. doi:10.1017/hpl.2021.5. eISSN 2052-3289. hdl:10044/1/89337. ISSN 2095-4719. S2CID 233401354.
  87. "CLF Get to know the CLF Lasers".
  88. "RFNC-VNIIEF – Science – Laser physics". 2005-04-06. Archived from the original on 2005-04-06.
  89. Hora, Heinrich; Miley, George H, eds. (1984). Laser Interaction and Related Plasma Phenomena. Springer US. doi:10.1007/978-1-4615-7332-6. ISBN 978-1-4615-7334-0.
  90. Schwarzschild, Bertram M. (1984). "Fusion experiments have begun at Antares". Physics Today. 37 (9): 19. Bibcode:1984PhT....37i..19S. doi:10.1063/1.2916397.
  91. Lehecka, T.; Bodner, S.; Deniz, A. V.; Mostovych, A. N.; Obenschain, S. P.; Pawley, C. J.; Pronko, M. S. (December 1991). "The NIKE KrF laser fusion facility". Journal of Fusion Energy. 10 (4): 301–303. Bibcode:1991JFuE...10..301L. doi:10.1007/BF01052128. eISSN 1572-9591. ISSN 0164-0313. S2CID 122087249.
  92. Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max; et al. (19 August 2015). "High-energy krypton fluoride lasers for inertial fusion". Applied Optics. 54 (31): F103-22. Bibcode:2015ApOpt..54F.103O. doi:10.1364/AO.54.00F103. eISSN 1539-4522. ISSN 0003-6935. PMID 26560597.
  93. CLERY, DANIEL (13 December 2022). "With historic explosion, a long sought fusion breakthrough". www.science.org. Retrieved 2022-12-14.
  94. "CEA – Laser Mégajoule". www-lmj.cea.fr.
  95. "The HiPER Project". Archived from the original on 2022-12-23.
  96. "University of Nevada, Reno. Nevada Terawatt Facility". archive.is. 2000-09-19. Archived from the original on 2000-09-19.
  97. "Sandia National Laboratories: National Security Programs". sandia.gov.
  98. "PULSOTRON". pulsotron.org. Archived from the original on 2019-04-01. Retrieved 2020-03-09.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.