Sequences related to strong Boolean functions

Studies of Boolean functions
sequences related to Boolean functions
triangles by arity and strength
base
triangle
diagonal families BF
triangle total triangle total
all Oak (Ex)Aloe Olive Thyme ExOlive Grass
balanced (Ex)Agave Laurel Saffron ExLaurel Sesame
dense Birch (Ex)Aloe Lemon Lily ExLemon Lotus
b & d (Ex)Agave Orange Chamomile ExOrange Calendula
signed triangles
base
triangle
families BF
diagonal triangle total diagonal triangle total
strong Turned
Rhodo.
Thyme SignedBerberis Aloe Grass SignedBramble ExAloe
balanced & strong Saffron SignedArdisia Agave Sesame SignedAronia ExAgave
dense Pascal Thyme SignedCypress Lily Grass SignedCedar Lotus
balanced & dense Saffron SignedOlearia Chamomile Sesame SignedOleander Calendula

Sequence Aloe

0 1 2 3 4 5 6 7
Aloe (A051502) 2 1 2 23 3904 134156284 288230371925149328 2658455991569831727504985413859223552
ExAloe 2 2 8 184 62464 4293001088 18446743803209556992 340282366920938461120638132973980614656
a ↦ strong families Aloe(a) is the number of strong families with arity a.

Aloe ∘ powers of two = ExAloe

Oak(Ex)Aloe = (Ex)Olive

Oak ∘ truncated Aloe = Forsythia

Sequence Agave

0 1 2 3 4 5 6 7
NonAgave 2 0 2 16 3154 115384420 259595620314358352 2471337663117268581931607874158730240
Agave 0 1 0 7 750 18771864 28634751610790976 187118328452563145573377539700493312
ExAgave 0 2 0 56 12000 600699648 1832624103090622464 23951146041928082633392325081663143936
a ↦ strong balanced families Agave(a) is the number of strong balanced families with arity a.

Agave ∘ powers of two = ExAgave

NonAgave = AloeAgave       That is the number of balanced families, that are not strong.

Oak(Ex)Agave = (Ex)Laurel